
DOCUMENT RESUME

ED 074 766 EM 010 964

TITLE APL/IV: Fourth International APL Users' Conference.
June 15-16, 1972, Atlanta, Georgia, U.S.A.

INSTITUTION Atlanta Public Schools, Ga. Computer Center.; Georgia
Inst. of Tech., Atlanta. School of Information
Science.

SPCNE AGENCY Atlanta Board of Education, Ga.
PUB DATE Jun 72
NOTE 194p.

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS *Bibliographies; *Computer Assisted Instruction;

Computer Graphics; *Computer science; *Conference
Reports; *Programing Languages; Statistical Analysis;
Time Sharing

IDENTIFIERS APL; *A Programming Language

ABSTRACT
APL is a computer language (A Programing Language) .

Papers at this conference of APL users deal with the following
topics: an APL approach to interactive display terminals; graphics in
APL; an interactive APL graphics system; modeling a satellite
experiment on APL; representing negative integers in bit vectors; APL
as a teaching tool--two versatile tutorial approaches; the evolution
of an interactive chemistry laboratory program; a collection of graph
analysis APL functions; management of APL time-sharing activities;
saving money by saving space in APL; security of APL application
packages; enhanced interaction for an APL system; subtasking in APL;
suggestions for a "mapped" extension of APL; APL as a notation for
statistical analysis; an adaptive query system; microprogram
training--an APL extension; and APL electronic circuit analysis
program and use of APL in teaching electrical network theory. Also
included is a bibliography of 340 items dealing with APL. (JK)

C (? ? ? :' T T T T I - - - z n''' r j n -'"'
/ , L (((:

Q 0 0 0 / / / / Itm w j U U U J -J 'r :r I [I F ; ; ; ; ; u U : .: : ''' . ; i . i i i 1 x i T T T T T 9 i9 ' ' ' ' A A

>

I
; ; ;junji : : : : : : > >>>uJuuuIIII144

* * * AA,1A c : < < < < ----- A AAt '

*

* * * '144 e C C f £9111 < < ------- " AAA ' t

R////1L LU L'Wr1r11 -------))) ((('.<<<<
)qmrrp,////t 1Lii11Cf1 ------- rr)))) ((<<<<

._..c:,
I I I I t prwni I r r r)) :))

' ° o9'fl'ii Ii I I r r (((. < < (c 1rpv V V V V cLcIc WA A ' r r i ' ' ,

r- L (t I
r N \\\qnp9999 t-t .tt JL_J"

-zj-
)çivvv v VCCCccAAA AA* ** '- { (

t 'j'' \\\n p99i- i-t t

N -- I 1 t I 1UIRR11PAA A AAVVV .-T"1 .'' i
i i t t

;

c:J 1' in /

c::J
:]]]]Jiitipppp
:9i1]J]]] 1 1 t P P ; ; ; ;

; \ \. \ \\ , > > , >eee00000r :)1 f f r E ; ; . ; I / / 1/ 1/ / / c c)

_L_J :1111 I] 1 1 t 3ppp ;;; , ; \\ \ \ \ >> > > >GO0OOf1 f I I ; ; ; ; ; I 1/ /1 1/ 1/

; ; ;))) \):.rj I
4 4

I I [[[1[)))))

4 4 4
; ;)))))T: I

r ç I)))))

\rrvVVVV4 4 " -))))-.':p I I r r r r r)))))nm
> tfTri "' ''' ririrn

tflflR 4 = z A 4 A .1 A > > > ' > ,,... L [I I I I n

44> >> HHI IIIIInr
t\\\\\xgxx /VT!VtF

....................................
...IITIT\\\\\xxxxxr+++it'VVVY
:II:::::nnnnn+nqAv -----

®4AAAAt++i-tPPPH4
CII: : :nnnnn : : : :\\\\\>>''>xx%m®i4AA.4f+t-i-PPPPfl4 . 14

..

..

..

1111CppDrLH('f
-------- rrrrrpppøL1LH

.........
11

..11

.. rr

r1IrTLL 1[Luuuuu cccE\\\\\'>> +* + flflriifl77?,,rT
nnnruTrrTIf LLLLuuuuu -- EEc\\\\\>'''>++++ flflflfli???.2?TT

... **

**

...

..........

LEE \\\\\LLLL1((((([,TLjftff\nnnnnAAAAAQooOO;;;;;++
; ;4+QQQOOij

I II LrTr 1iiijçQCCCCC T_,IrL Ii1J.ipc)
+\XXXXX\ç\ç+\ 1i1JHou------,XXx

U F+t-1-+/I///xxXxX[C[[[Xt
uu di ++++xxXxx\\\\\(TTTTTO 000
\ 'PPPPeee8e/////ww. APL\fl' \\\\\)))))\\\\\IIIIIuuuuuxx**

P

1LPPPFPJ////L11LLccccc pQj'' rNTER'IATrONArI.
LI. 0PPPP/I///L11LLccccA.A.4 APE US'S' CO?1FEP1]NCE' LLtLLic+cxrxciS?????cC[1[pppoo))
Li P PpP/////L11LLcccd4.
,vvvvJIIIIccccccccc++++ JU1 15-16, 1072 ww+cxaczacxcxaa\\
,cvvvvvIIIIIccccccccc+++++ A'3'6ANTA, GEOWIA U.S.A ?'? +iwcJuwxaaaciciacxaa\\
mi'vvvHHIcccccccccc*+++ wicxcrzcxcxQ\\

..f ,,I11XI±f+++
VV t i lt+t+tAAAAA+ftf-t->>>>> -- XXXA AAA+++-4A

'VV >>>flflflflflDD+lltffffAAAAAf+f-$-t>>>>>

..............................

PIOC I'. DINGS

0 1: 1 H F

1 }CR INTE RNA T 10 NA 1.

API, rsi,. S 1.10 N N1: 1: 1' NU I'

JUNE 15 - 1b 1072

U S DEPARTMENT OF HEALTH,
EOUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMEW HAS BEEN REPRO
DUCED EXACTL'? AS RECEIVED FROM
THE PERSON OF? ORGANIZATION ORIG
INATING IT PaNTS OF VIEvv OR OPIN
IONS STAr..13 DO NOT NECESSARILY
REPRESENT 0;FICIAL OFFICE OF EDO
CATiOT e0SiTiON OR POt Icy

ATLANTA GEORGIA U.S.A.

S
pe

ci
al

 th
an

ks
 a

re
 d

ue
 to

 B
er

na
rd

 M
cf

 M
an

y
w

ho
 s

up
er

vi
se

d
th

e
pr

od
uc

tio
n

of

th
es

e
pr

oc
ee

di
ng

s;
 to

 L
in

da
 R

ea
ga

n,
 G

lo
ria

 Q
ua

ttl
eb

au
m

,
B

et
ty

 B
la

ck
 a

nd

B
ob

bi
e

W
in

g(
)

w
ho

 e
nt

er
ed

 a
ll

of
 th

e
pa

pe
rs

 in
to

 th
e

A
T

S
 te

rm
in

al
 s

ys
te

m
;

to
 E

dd
ie

 P
ea

bo
dy

 w
ho

 d
id

 a
ll

th
e

la
yo

ut
 w

or
k;

to
 M

ik
e

M
as

s,
:!v

 a
nd

 B
ill

 M
au

ry

w
ho

 m
ad

e
nu

m
er

ou
s

co
rr

ec
tio

ns
 a

nd
 s

ug
ge

st
io

ns
 o

f a
te

ch
ni

ca
l n

at
ur

e:
to

th
e

en
tir

e
op

er
at

io
ns

 d
ep

ar
tm

en
t o

f t
he

 A
tla

nt
a

P
ub

lic
 S

ch
oo

ls
' C

om
pu

te
r

C
en

te
r

w
ho

 h
el

pe
d

ag
ai

n
an

d
ag

ai
n

w
ith

 p
ro

of
 p

ro
du

ct
io

n;
an

d
to

th
e

st
af

f o
f

M
cD

an
ie

l P
rin

tin
g

C
om

pa
riy

.

TABLE OF CONTE:ITS

Al Is APL epidemic? or a study of its growth throua an extended
J. C. Rault and G. De'lars

A2 An Apl approach to interactive display terminals 23

W. H. :liehoff and A. L. .:ones

A3 Graphics in APL 33

Alfred '4. Berl:

A4 An interactive APL gr-aphics system 37

Stuart G. Greenberg and Crai,,3 I. Jngnson

131 odeling a satellite experiment on APL 45

Charles D. Wende

D2 Representing negative integers in bit vectors -- a short. note 511

Luther J. Woodrum

133 APL as a teaching tool: two versatile tutorial approaches 51

Leslie n. Davis, Jak Eskinazi and Daniel J. :lacero

130 The evolution of an interactive chemistry laboratory program 67

Thomas R. Dehner and Bruce E. Norcross

135 A collection of graph analysis APL functions 73

E. Girard, D. Bastin and J. C. Rault

Cl !lanagement of APL time-sharing activities 193

James Higgins and A. Kellerman

C2 Every little bit hurts: saving money by saving space in APL 115

Richard Alercia, Robert Swiatek and Gerald :1. Weinberg

C3 Security of APL application packages 119

Paul Penfield, J.

CO Enhanced interaction for an APL system
James L. Ryan

D1 A PL/1 batch processor for APL 123

S. Charmonman and S. E. Bell

D2 Subta. :ng in APL 135

Alain iville-DeChene and Louis P. A. Robichaud

D3 Suggestions for a "mapped" extension of APL 142

Clement Leibovitz

1311 APL as a nctition for statistical analysis 106

N. W. Smillie

El An adaptive query system 1511

E. Kellerman

E2 licroprogram training -- an APL application 1511

Ray Polivka and Kent Haralson

E3 ECAPL: an APL electronic circuit analysis program ..
161

RAndall W. Jensen, Terry A. Higbee and Paul W. Hansen

E4 Use of APL in teaching electrical network theory 191

Paul Penfield, Jr.

FOREWORD

The rourth International APL Users' Conference was held in Atlanta, Georgia, on June 15 and

16, 1972. The conference was co-hosted by the Computer Center, Atlanta Public Schools, and the

School of Information and Computer Science, Georgia Institute of Technology.

The program was arranged by Dr. Garth roster, Syracuse University, Syracuse, New York. Dr.

roster was responsible for the refereeing of the papers and the establishment of the fine

program.

'These proceedings were compiled at the Atlanta Public School Systems' Computer Center using

AT S/361. kditinq was accomplished by staff members from the Computer, Center and the Computer

Braille Project. The print shop of the Atlanta Area Technical School was most cooperative in

providing printing services for conference brochures.

Thu local arrangements were the responsibility. of Is. Jackie Reynolds, Systems Analyst at

the Computer Center. ls. Reynolds handled all registrations and hotel accommodations for the

conference and has contributed many hours of her personal time to ensure the success of the

conference.

It is obvious that a conference such as this would not be successful without the

contributions made by the speakers. They have contributed greatly to the sessions and to the

overall efforts toward the proliferation of APL in the computer community.

As conference attendees, you are all to be commended for making this conference a success.

APL, as is brought out in one of the papers, is epidemic and you are all contributors to the

cause.

There are too many to individually cite, who performed hours of thankless chores for this

conference. Many letters had to be typed and mailed and many telephone calls had to be

answered. It quite obviously is a great effort to host a conference such as this. I would like

to take this opportunity to collectively thank everyone who helped to make this conference a

success.

Thomas J. McConnell, Jr.

Arrangements Chairman

IS APL EPIDEMIC ? OR A STUDY OP ITS GROWTH THECUGH AN
EXTENDED BIBLIOGRAPHY

J. C. Rault and G. Demers
Laboratoire Central de Recherches

THOISON-CSF
Domaine de Corbeville, B. P. 10

(91;4- Orsay, Prance

Summary:

tts3, An attempt is made to demonstrate that the use of APL is growing in an epidemic fashion.
The theory of epidemic processes is applied in an approximate manner by means of data provided
by a nearly-exhaustive bibliography given as an appendix. AFL is proved to be undoubtedly
epidemic.

A second part details the given bibliography.

Introduction

The few conferences held these past years on APL have demonstrated a fast growth of its
use. At this time APL, as we hape this conference will show, is pervading every area of
activity.

To the dismay of the vilifiers of APL, this pattern of development resembles the spread of
an infectious disease.

The purpose of this piper is twofold: first establishing that LPL is an epidemic, a
commonplace assertion among APL supporters; second providing the APL community and the APL
addicts to-come with an extended bibliography given in appendix. To our knowledge, such a
bibliography has not been made available so far.

The Epidemiology of APL

The spread of scientific ideas has already been studied in terms of an epidemic process(1,
2, 3). A thorough theory has been laid down, and applie,.! to the study of an entire discipline
such as symbolic logic(3) for a one-hundred year time interval.

Along these lines we attempt here to apply the same theory to the growth of APL using as a
data base a bibliography recently compiled.

130 ,

Figure 1

100

Figure 2

sd

100

so

0

Number of new contributoeS orr year

1901 2 5 4 5 6 7 8 9 70 1 2

Charipy in active contributors

(wlidemic curve)

1961 2 3 4

/

70

f-furr

10G

io

(149trih,ltinn of ;:unliceions in nnr-vear

-A- --I -
1961 2 3 ^ 5 6 7 8 9 70 1 2

r:Litilleatinns tn

-

1961 2 4 6 7 g 9 70 ^ 2

lt would not be contended that this literature search is exhaustive and we are fully aware
that improvements can be made.

This bibliography amounts to about 330 entries and 220 authors. Thus the APL epidemic
process, investigated here, considers a population of 220 individuals, or infections, over a

ten-year span. Taking into account that an entry may include several authors the total number of
publications is 422.,

Figure 1 shows the number of new contributors each year; figure 2, showing the change in
the number of active contributors each year, represents the epidemic curve for APL since its
inception. This curve reveals clearly that since 1968 APL is really an epidemic. This
corresponds to the release of an "infectious material" by IBM, APL/360, as a class III product.

The shape of this epidemic curve does not allow one to foresee that the epidemic will stabilize
in the near future, which, accarding to theory, should occur when the curve ceases to increase.
(In fact this curve tends to grow exponentially).

Figure 3 gives the yearly number of publications; if "the present rate of growth is
maintained this year we may expect 250 papers in 1972 with 40 new authors.

Figure 4 indicates the yearly average number of publications per author. This ratio his
increased continuously since 1369.

The above figures should not be taken as accurate ones but just as mere benOhmarks
manifesting that APL, in spite of its infectious character to certain people, is hale and hearty
and thriving at a pace which may endanger soon the bailiwicks of those die-hard fossils that
FORTRAN, BASIC and other patters are.

An Annotated Bibliography

Perusing the appended bibliography is sufficient to be convinced that APL is present in
many fields. We intend here to make general comments for facilitating the use of this
bibliography.

APL Implementations One may nate the fact, which is not always well known except to specialists,
that APL may now be found on major computers outside of IBM:

BURROUGHS: 23, 98, 144-46, 247, 298 [Ed. note: numbers here refer to
CDC: 58 bibliography, not hardware(3
CII: 15774, 181-2, 195-6, 198
DEC: 216
HONEYWELL/GE: 95
IBM: 22, 59, 77-80, 82, 312, 331
UNIVAC: 339
XDS: 21, 242-43, 285, 340
Microprogrammed APL machines: 16, 45, 102-106, 203, 207, 295-297

9

APL Zompatible Terminals

A wide range of APL compatible peripherals are available. Reference 177 gives a nearly
complete 1;st of them (48, 62, 86, 101, 188, 250, 307).

APL File Handling Capabilities

Users of APL quite early have demanded facilities to work with large collections of data
under program control. A number of file systems have been experiemnted or are presently
available (37, 63, 84, 179, 189, 202, 262, 334, 338) .

APL Handbooks

Many books, handbooks, user's manua,.s, vid.iotapes and other materials are available: 6, 10,
23-24, 42, 43, 78-80, 95, 112, 140-2, 205, 219, 232, 235-38, 320-323, 329.

APL AS AN AID FOR DEVELOPING PROGRAMS: 8, 17
APL BATCH PROCESSIN3: 51, 289
APL DATA ACQUISITION: 149, 226
APL ENHANCEMENT AND EXTENSIONS: 36, 49, 50, 152, 110, 215, 248
APL GRAPHICS: 72, 150, 177, 235
APL HISTORY: 14, 261, 302
APL IMPLEMENTATION: 1, 2, 5, 16, 102-106, 156, 203, 207, 224, 231, 252-3, 207, 292
APL PLOTTING: 20, 62, 177, 239
APL SEMANTICS: 7, 230, 233, 245-46
APL THEORY: 32, 40, 47, 120, 159, 215, 230, 233, 245-46, 252-3, 279

In tie following we give for the most significative fields of application, the
references where the reader may find more detail:

COMMER-CIAL: 20

appropriate'

COMPUTER_ AIDED INSTRUCTION: 26, 22, 56, 71, 83, 99-100, 111 116, 127-8, 133, 165,
168, 176, 222, 254, 273, 304, 327

DATA BASES: 171-73
ENGINEERING:

Digital Systems: 15,

160,
29, 31, 33, 55,
163, 199, 200,

61, 69, 74-76, 81,
206, 240

89, 91, 110, 137-8,

Electrical Networks: 18, 19, 68, 97, 208-214, 218, 257, 259, 286
General Engineering: 166, 191, 258
Mechanical Design: 66, 139
Survey: 174

FINANCE: 254
INSURANCE: 67, 135, 337
MANAGEMENT: 38, 87, 93, 162, 164,
MATHEMATICS:

Complex Arithmetic: 70
Fast Fourier Transform: 139,
Formal Computation: 179, 280
Graph Theory: 68
Linear Programming: 194
8$parical Analysis: 20, 27,
Aerations Research: 112

Optimization: 9
PERT: 20, 192-93, 217, 265.
Sorting: 293

1

Statistics and Probability

255, 282, 291, 336

183, 280

41, 46, 136, 276

326, 331-32

11, 12, 20, 67, 108, 129, 155, 263-64, 266-71, 290
Theorem Proving: 107, 204
Walsh Functions: 251

MEDICINE: 300
RECREATION AND GAMES: 310, 311
TAXES: 260

Conclusions

Aside from the polemical aspect of this paper aimed to pique APL detractors, hope that it
will be a contribution to the spreading of APL. We propose that this bibliography be augmented,
improved and refined, possibly with the help of a KWIC index.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. P. Abrams of CEGOS-INFORMATIODE, Puteaux, France, and M. V.
Chaptal of PIRIA, Rocquencourt, France, for their contributions which aided in the preparation
of this bibliography.

1. W. Coffman. "Mathematical approac
/-

449-452, October 1966.

BIBLIOGRAPHY

to the spread of scientific ideas", Nature, 212, pp.

Z. W.- Coffman and V. A.Aewill. "Communications and epidemic processes", Proc. Royal Soc.,
A298, pp. 316-334, May 1957.

3. W. Coltman. "A mathematical method for analyzing the growth of a scientific discipline",
Journal or'the ACM, Vol. 18, No. 2, pp. 173-185, April 1971.

APPENDIX

(An APL Bibliography)

4

AN APL BIBLIOGRAPHY APRIL 1972

1) P,S.ABRAMS =AN INTERPRETER FOR 'IVERSON NOTATION'tftCH.REPT
CS47tE0PUTER SCIENCE DEPT,STANFORD UNIVERSITYISTANFORD
CALIFORNIA.17 AOUT 1S66,

2) P.S.ABRAYS=AN APL MACHINLIPH.D. lHESIS,STANFORD UNIVERSITY.
STANFORD LINrAR ACCELE.AATOR CENTERIRPT NO..SLAC-114. FEVRIER
1970 ET AD.706-741.

3) P.S.ABRAMS=INTRODUCTION AU LANGAGE APLIREVUE CEGOS-INFORMAT-
IQUE010.34.P.5.-7.MAR5-AWIL-1970.

41 P.S.ABRAMS ET W.M.MC KEEMAN. COMPUTER DISPLAY OF THE DERIVED
POLYIOPFS.PFVUE CEGOS-INFORMATIQUEIN0.36tP.25-35.JUILLET-
AOUT 1970.

5) P.S.ABRAMS=UNE NOUVELLE MACHINE POUR APL ,AFCET.CONGRES
DIINFORATIQUE,BROCHURE NO.2,P.85-106 ,PARIS,SEPTEMBRE 1910.

6) P.S.ABRAMS ET G.LACOURLY=LE-LANGAGE-DE PROGRAMMATION APL,
_ UNE_INTRODUCTIONLCEGOS-INFORMATIQUE 1971.

7/ P.S.ARPAMS=A FORMAL APPROACH TO APL SEMANTrCSICOLLOQUE APL,
9-10 SEPTEBRE 1971,PUBLICATION IRIA P.159-80.

8) B:A'.'.Y,D:BASTINIE.GIRARD ET J.C.RAULT= L'APL -UN OUT1L-PbUR'LE
DEVELOPEMENT DES PROGRAMMES, REVUE TECHNIQUE THOMSON-CSF.
SEPTEMBRE 1972a

9) B.AMY=A PROPOS D'UN .AOGRAMME D'OPTIMISATIONANALYSE NUMER-
IOUE ET LOGIQUF DES PROGRAMMES EN APL,REVUE TECHNIQUE
THOMSON-CSFISEPTEMBRE 1972.

10) A.ANGER=THE APL LANGUAGEJ.WILEY.1971.

11) F.J.ANSCOMBE=USE OF IVERSON'S LANGUAGE APL FOR STATISTICAL
CCNPUTING,DEPT OF STATISTICS,YALE UNIVERSITYITECHNICAL REPT
NO.4,JUILLET 1968 ET RAPPORT AD 672-557.

12) F.J.ANSCOMBE=STATISTICAL COMPUTING WITH APL.1970.

13) C.R.ATTANASIO.G.WLDBAUM .ET F.ZARNFALLER=THE IMPLEMENTATION
OF APL/360 FOR OPERATING SYSTEM/3600IBM RESEARCH DIVISION
YORKTOWN HEIGHTStNeY.t4 JUIN 1968tRC-2109.

14) J.N.BAIRSTOW=MR IVERSON'S LANGUAGE AND HOW IT GREW,COMPUTER
DECISIONSIVOL.1tN0.1.P.42-45.SEPTEMBRE 1969.

15) D.BASTIN,F.GIRARD ET J.C.RAULT=LA SIMULATION DES CIRCUITS
LOCIOUFS A L'AIDE D'UN SYSTEME APLIREVOE TECHNIQUE THOMSON-
CSF,SEPTEMBRE 1972.

16) G.BATTAREL,M.DELBREIL ET P.KALFON=UN INTERPRETEUR APL AVEC
GENERATION ET REUTILISATION DE CODE MACHINE,COLLOQUE APL
9-10 SEPTEMBRE 1971tPUBLICATION IRIA P-083-402.

17) R.BAYER=TOWARD COMPUTER-AIDED PRODUCTION OF SOFTWARE FOR MA-
THEMATICAL PROGRAMMING,IN MATHEMATICAL SOFTWARE,J.R.RICE,
ACADEMIC PRESS 1971.1).275-98.

18) W.R.BEA' ;=AN APL ImPLEMENTATION OF MICROWAVE CIRCUIT ANALYSIS
TECHNICAL APPLICATIONS PAPERS,NEREM 1970r P. 99-105

I 19) R.BEAUFILS.P.CAZAUX ET M.LABORIE=APPLICATION D'APL, A L'UNI-
VERSITF DE TOULOULEICOLLOQUE APLI9-10 SEPTEMBRE 1971 ,PUBLI-
CATION IRIA.

5

(20) J.HECKF;=EDITPAK.FINA.4CEPAK.MATHPAK.PLOTPASTATRAK.
SCIENTIFIC TIME-SHAI-ING CORP.#1969.

(21) G.A.EERGES ET F.W0RUST=APL/MSJ REFERENCE ANUAL.DEPT LE EE.
MONTANA STATE UNIVERSITY.30ZEMA.MONTANA.26 SEPTEm,BRE 1966.

I 22) P.C.PERRY=APL/1130 PRIMER.IBM CORP.s,19680FORM NO.GC-20-
1697-0.

(23) P.C.BERRY=APL/.360 PRIMERtSTUDENT TEXT.IBM CORP 1969.
FORM NO.GC 20.-..1702-0d

(24) P.C.BERRY= APL /360 PRIMER,IRM CORP..FORM NO.GH-20-0689-1
2NDF EDITION JANVIER 1970.

25) P.C.PERRY.AvD.FALKOFF ET K.EsIVERSON=USING THE COMPUTER TO
COMPUTEIA DIRECT HUT NEGLECTED APPROACH TO TE,',CHING MATHE-
!MATICSINE-YORK IBM SCIENTIFIC CENTE;:tREPORT NO.320-29651MAI
1970 ,PT IFIP 1;;ORLD CONFERENCE ON COMPUTE EDUCATIONIASTLR-
DA'A$24.-28 ACUT 1970.

(26) P.C.BERRY.GoBA:71TOLI.CADELLIACUILA FT V.N.SPADAVECCHIA=APL
AND IN1.11GHTA STRATEGY FOR TEACH1N6.COLL000E APL.9-10 SEPT-
EMARE 1971.PUBLICATION IRIA P.251-72.

(.27) T.A.PICKART=FUNCTION TO ACCELERATE AND/OR INDUCE SEQUENCE
CONVERGENCE.APL QUOTE-OUADtVOL.2.N0.1sP.8^9 AVRIL 1970

2F) D.BIXLER=MSU APL,MICHIGAN STATE UNIVEWSITY.COMPUTER LAbOR-
ATORY.NOTICE'NO.356.7 FEVRIER 1972.

(29) L.HOLLIET.F.XPERIENCES DIE,NSEIGNEMENT.AVEC ARL.COLLOQUE APL
9-10 SEPTEM9RE 1971 .PUPLACAT ION IRIA Pc445-60.

(301 D.A.PONYUM=ARKSENSE APL,APL QUOTE-OUADsVOL 3.N0.1sP.18-19.
11 JUiN 1971.

(31) W.G.POURICIUS.W.C.CAPTER.K.A.DUKE.JcP.ROTH FT P.R.SCHNEIDER=
INTERACTIVE DESIGN OF SELF-TESTING CIRCUITRYIPROCEEDINS OF

THE PURDUE SYMPOSIUm ON INFORMATION PROCESSIPiG.AVRIL 1969
.15.73-80.

(32) P.BRAFFORT=EPIAPLIFUNDAMENTAL INSIGHTS FPU.1 ADVANCES IN
NOTATIONAL SYSTEMATICSISEAS ANNUAL MEETINGOISE.SEPTEMBRE

(33) ',J.L.RRAME ET C.V.RAMAMOORTHY=AN INTERACTIVE SIMULATOR GEN-
ERATING SYSTEM FOR SMALL CCMPUTERS.SJCC 1971.P.'25 -449.

(34) L.M.BREED ET R.H.LATHWELL=THE IMPLEMENTATION OF APL/360
DANS "INTERACTIVE SYSTEMS FOR EXPERIMENTAL APPLIED MATHEM-
ATICS".ACADEMIC PRESS 1968.P.39C-399.A.KLERER ET J.REIN-
FELDS EDITORStE7 ACM SYMPOSIUM ON EXPERIMENTAL SYSTEMS FOR
APPLIED mATHFmAT1CS

(35) L.M.BREED ET RsH.LATHWELL=APL/360tIBM CONTRIBUTED LIBRARY
360-D-03-007.1968.

(36) LeM.BREED=GENERALIZING APL SCALAR EXTENSION,APL QUOTE-QUAD,
VOL.2 ,N0.6,MARS

(37) L.M.BRFED=DFSIGN OF THE APL PLUS FILE SUB SYSTEM/COLLOQUE
APL 9-10-SEPTEMBRE 1971,PUBLICATION IRIA.

38) J.A.EROADSTON=CHARTING SCHEDULE PERFURMANCE,PRODUCTION AND
INVENTORY MANAGEMENT, 1ST QUARTER 1970,P.79 -81.

(39) J.A.BROWN=USING THE ACKERMAN FUNCTION TO RATE PROGRAMMI'NG
LANGUAGES,APL QUOTE....GUAD,VOL21N0.10P.4..-59AVRIL 1970.

6

601 J.A.BROWN=A GENERALIZATION OF APL.PH.D. 1HESIS,DEPARTmENT 0F
SYSTEMS AND INFORmATION SCIENCE,SYRACUSL UNIVERSITY,SEPT
EMBRE 1971.

41) E.A.PUCHHEIT ET R.9.RODEN.APL ROUTINES FOR EVALUATING FUNCT
IONS IN MATHEMATICAL rHYSIC'."'''I 0' APPLIED ANALYSIS AND
COMPUTER SCIFNCE,RESEARr ,2029,NOVEYBRE 1970.

42) P.CALINGAEPT=INTRODU 'NING LANG'JAGE,SCIENCE
RESEARCH ASSOCIATES, EDITION.00TOBRE 1967.

43) R.S.CARBERRY ET CCLL. =A ING LANGUAGE /1130,
IBM CONTRIRUTED LIBRARY 1116-03-3-001,1968.

44) V.CHAPTAL.COMPTE RENDU DU COLLCOUE APL,BULLE1IN DE L'IRIA,
NO.10,P.20-25,JANVIER 1972.

45) V.CHAPTAL ET AL..STRUCTURES ET SYSTEMES DE PROSRAMMATION,
BULLETIN DE L'IRIA,N0.10,P.6-9sJANVIER 1972.

46) S.CHARMONMAN,S.CAPAY ET M.L.LOUIFOYNE.USE OF APL/360 IN
NUMERICAL. ANALYSIS,DEPT OF COMPUTING SCIENCE,PUBLICATION
NO.11,UNIVERSITY OF ALBERTA,EDMONTON,CANADA,DECEMBRE 1967.

47) S.CHARMONMAN.A COMPARISON OF THE STRUCTURES OF APL,FORTRAN,
ALGOL AND PL /1,APL QUOTEOUADIVOL.2.N0.40.2-4,JANVIER 1970.

6B) S.CHARmOMMAN=SIXTYCHARACTER REPRESENTATION OF APL SYMBOLS,
APL OUOTE--CUAD,VOL.2,NO.2,P.5-10,10 JUILLEI 1970.

49) S.CHARMONMAN.A GENERALIZATION OF APL ARRAY ORIENTED CONCEPT,
APL OVOTEOUADIVOL.2oN0.3oP.13-17123 SEPTEMBIRE 1970.

5(t) S.CHARMONMAN.A GENERALIZATION OF APL ARRAY ORIENTED CONCEPT,
SIGPLAN NOTICES,VOL.50.N0. 11,1970.

511 S.CHARmONMAN=APL/UMC AN EXPERPIENTAL TRANSLATOR FOR BATCH
PROCESSING OF A SUBSET OF APL,DEPARTMENT O" COMPUTER SCIENCE
UNIVERSITY OF MISSOURICOLUMBIA,1971.

52) S.J.CLARK.APL/360 AND 1130 VERSIONSA COMPARISON,MC DONNELL
DOUGLASASTRONAUTICS,MATHEMATICAL SCIENCES DEPARTMENT,HUN
INGTON BEACH,CALIFORNIA,20 DECEMBRE 1969,A3- 950 L240
TECHNICAL MEMO 69-15.

(53) J.F.CLEMENTI FT P.P.FLETCHER=MODIFICATIONS TO THE APL/1130
SYSTEM TO PROVIDE MORE CONVENIENT OPERATING ON A FORTRAN
USER'S MACHINE,APL OUOTEOUAD,VOL.3,N0.1rP.16-18,11 JUIN
1971.ET VOL.30N0.2/30.40-62, 1 OCTOBRE 1971.

I 56) I.J.COLE=SOME APPLICATIONS OF A PROGRAMMING LANGUAGE,GODDARD
SPACE FLIGHT CENTER GREENBELTWARYLAND,N67-37397,AOUT 1967.

(55) M.CORREIA,D.COSSMAN,F.PUTZOLU ET T.S.NETHEN.MINIMIZING THE
PROBLEM OF LOGIC TESTING BY THE INTERACTION OF A DESIGN
GROUP WITH USER ORIENTED FACILITIES,SEVENTH DESIGN AUTO
MATION WORKSHOP,JUIN 1970tP.100-107.

(56) J.D.COUGER.SCHOOLS,COLLEGES ATTEST TO APL GROWTHICOMPUTER
WORLD.VOL.60NO. 13'P.16.29 MARS 1972.

(57) C.J.CREVELING=EXPERIMENTAL USE OF A PROGRAMMING LANGUAGE
(APL) AT THE GODDARD SPACE FLIGHT CENTER,GSFC REPORT
NO0(560-68-420,NOVEMBRE 1968,GREENBELT,MARYLAND.

(58) N.DAIRIKE=LAWRENCE RADIATION LABORATORY APL IMPLEMENTATION
ON CDC 6000- 7600,APL OUOTEOUAD,VOL.3,N0.10.10.11,JUIN 1971
ET APL USERS CONFERENCE WORKSHOP 3,BERKELEY,20-21 AVRIL 1971

7

(59) T.P.DANIELL.TIMESHARING APL FOR IBM/1130 SYSTEMS,APL QUOTE
OUADIVOL.30.0.11P.10-11,11 JUIN 1971 ET API_ USERS' CON
FERENCE WORKSHOP 319ERKELEY20.-21 AVRIL 1971.

(60) I.DAVIDLON.SUJ,!ARY OF CONFERENCE ON APRIL 6TH 1971 ON THE
APPLICATION OF APL IN BELL NORTHERN RESEARCH AND BELL
CANADA.

1 61) W.N.E.DAY,rCOMPILER ASSIGNMENT OF DATA ITEMS TO REGISTERS.
IBM SYSTES JOURNAL.N0.4 P.281-317,1970.

(62) Y.DAYTON=A PLOTTER OF APLIAPL OUOTEI,..JADIVOL.3,N0.1111 JUIN
1971.P.13 FT APL USERS CONFERENCE wONKSHOP 3IHERKELEY 20-21
APRIL 1971.

(63) 6.DE')AFS"SYSTEvES DE FICHIER5 EN APL, RAPPORT INTERNE
IHOMSONCSFICCTI NO.2567,17 SEPTEMBRE 1971.

(64) G.DEYARS,J.C.RAULT ET G.RUGGIU=COMPTE RENDU DU COLLOGUE APL
ORGANISE PAR L'IRIA LES 9 ET 10 SEPTEMBRE 1971,RAPPORT
INTERNE THOMSON CSF,LCR DR5 NO.1607,23 SEPTEMBRE 1971.

(65) F.DESTOMBES=LE SYSTEME APL /360.COLLOCUE SUR LA TELEINFORMA
TIOUE 1969,TOME 10.414-621,EDITIONS CHIRON.

(66) G.DE VAHL DAVIS ET W.N.HOLMES=THE USE OF APL IN ENGINEERING
EDUCATIONICOLLGOUE APL.9-10 SEPTEMBRE 19711PURLICATION IRIA
P.279-307.

(67) W.DE VRIES.WATCH YOURICOMPUTER)LANGUAGE,THE ACTUARYIMARS
1971

(68) G.DHATT ET L.ROBICHAUD=FINITE ELEMENTSIFLOW ..GRAPHS AND APL,
COLLOOUE APL.9-10 SEPTEMBRE 19714PUBLICATION IRIA

(69) K.A.DUKE,H.D.SCHNURMANN ET T.I.WILSON.SYSTEM VALIDATION BY
THREELEVEL MODELING SYNTHESISIIBM JOURNAL OF RESEARCH AND
DEVELOPMENTIVOL.1500.2.P.166-74.MARS 1971.

(70) F.M.EDWAROS FT WoR.TINGA=AN APL COMPLEX ARITHMETIC PACKAGE,
TECHNICAL APPLICATIONS PAPERSINEREM 19701P. 106-1 1 2

(71) E.M.EDWARDS=APLIA NATURAL LANGUAGE FOR ENGINEERING EDUCATION
PART IIIIEEE TRANSACTIONS ON EDUCATIONIVOL.E-14,N0.40.179
801NOVEYBRE 1971.

72) D.W.EME1LEY=APL GRAPHIC5,M.5. THESIS,DEPARTEMENT OF COMPUTER
SCIENCFIUNIVERSITY OF UTAH, 1971,

(73) A.D.FALKOFF=ALGORITHMS FOR PARALLEL SEARCH MEMORIES...JOURNAL
OF THE ACMIOCTOBRE 196203.48B-511.

(74) A.D.FALKOFF;K.E.IVERSON ET E.H.SUSSENGUTH.A FORMAL DESCRIPT
ION OF SYSTEM/3601IBM SYSTEMS JOURNAL,VOL.3,N0.3,P.193 -262,
1964.

(75) A.D.FALKOFFIK.E.IVERSON ET E.H.SUSSCNGUTH= ERRATA FOR A
FORMAL DESCRIPTION OF SYSTEM/360,IBM SYSTEMS JOURNAL6VOL.41
NO.1.P.84,1965.

(76) A.D.FALKOFF=FORMAL DESCRIPTION OF PROCESSESTHE FIRST STEP
IN DESIGN AUTOMATIONGPROCEEDINGS OF THE SHARE DESIGN AUTO
MATION WORKSHOPtjUIN 1965.

(77) AsD.FALKOFF ET K.E.IVERSON=THE APL/360 TERMINAL SYSTEM
P.22-37,DAN5 INTERACTIVE SYSTEMS FOR EXPERIMENTAL APPLIED
MATHFMATICSIACADEYIC PRESS.19681M.KLERER ET J.REINFELDS
EDITORS.ET ACM SYMPOSIUM ON EXPERIMENTAL SYSTEMS FOR APPLIED
MATHEMATICS 1967.VOIR AUSSI IBM RESEARCH CENTER YORKTOWN,
N.Y..R&-1922116 OCTOBRE 1967.

8

72) A.D.FALKOFF ET K.E.IVERSCN=THE Apt_ TERMINAL SYSTEM =INSTF,UC
TID%5 FOR OPEPAT10.4511BM T.J.WAT5ON RESEARCH CENTER,YORKTOWN
HEIGHTS,N.Y.105921mARS 1967,REVU EN 1968.

(79) A.D.FALKOFF E." K.E.IVERSON=APL/360 USER'S MANUAL,IBM CORP.,
T.J.WATSON RE:',EARCH CENTER.YORKTOWN HEICHTS.N.Y.,105961
FORM CH.20-0683.

(80) A.D.FALKOFF FT KaE.IVERSON=APL/360 MANUEL D'UTILISATION 1966
TRADUCTION FPANCAISE PAR Y.G.RAYNAUD ET G.P.SIMIAN,UNIVER
SITE PAUL SABATIER,TOULCUSE.1970.

(81) A.D.FALKeF'.
NATO SC'
TECHN1

'ITERIA FOR A SYSTEM DESIGN LANGUAGE.REPORT ON
m'''ITTEF CONFERENCE ON SOFTWARE ENGINELR1NG

(82) A.D.FA: .7.E.IVERSON=APL/360-05 AND APL/360 DOS USER'S
MANUALIP:M FORM,SH20-0906-0IFIRST EDITION,DECEMBRE 1970.

(83)

(84)

A PALKOFF ET K.E.IVERSON=THE USE. OF COMPUTERS IN TEACHING
MATHEMATICS.IRM PHILADELPHIA SCIENTIFIC CENTER REPORT 320
2986.AVIRIL 1970.

A.D.FALKOFF =A SURVEY OF EXPERIMENTAL APL FILE AND I/O SYS
TEMS IN 1Bv.COLLOQUE APL.9 -10 SEPTEBRE 1971.(', q_ICATION
IRIA.P.365-74.

(85) P.FALSTER=APL 15 A TOOL FOR THE FORMULATION OF PROBLEMS,
DATABEHANDLINGIN0.91P.28-34,1970.

(86) J.FLPTCHER.AN 8BIT ASCII CODE.APL.QUOTE.-OUAD1VOL.3,N0.1
P.13,11 JUIN 19719E7 APL USERS CONFERENCE WORKSHOP 3,
BFRKELEY,20 -21 AVRIL 1971.

(87) P.H.FORTIN.D.SAMSON.P.LAVERDIERE ET L.P.A.ROBICHAUD=UTILISA
TION D1APL DANS LE CADRE DU PROJET DES STATUTS DU QUEBEC,
COLLOOUE APL.9-10 SEPTEMBRE 1970.PUBLICATION IRIA P.115-137.

(28) G.H.FOSTER=APL A PERSPICUOUS LANGUAGE.COMPUTERS AND AUTO
MATION.VOL.181N0.12.P.24-26.28.NOVEMBRE 1969.

(89) G.H.FOSTER=USING APL TO INVESTIGATE SEQUENTIAL MACHINES.
TECHNICAL APPLICATIONS PAPERSoNEREM 1970.P.121-7.

(90) G.H.FOSTER=AP..,A NATURAL LANGUAGE FOR ENGINEERING PT ',IEEE
TRANSACTIONS ON EDUCATION.VOL.E-1400.4.P.174-179.NOVEMBRE
1971.

(91) T.D.FRIFDMAN ET S.C.YANG=METHODS USED IN AN AUTOMATIC LOGIC
DESIGN GENERATOR(ALERT)IEEE.TRANS. ON COMPUTERS.
VOL.C-15,N0.7.1).593-614.JUILLET 1959.

(92) D.C.GAZIS=A COMPUTER MODEL FOR 1HE FINANCIAL ANALYSIS OF

(9:7) URBAN PROJECTS,IBM RESEARCH CENTER,YORKTOWN HEIGHTS,N.Y.0
13 AVRIL 1970,RC -2850.

(94) L.I.G1LMAN ET A.J.ROSE =NOTES FOR THE VIDEOTAPE COURSE,IBM
RESEARCH DIVISION.YORKTOWN HEIGHTS.N.Y.0

(95) L.C.GILMAN ET A.J.ROSE=APL/360,AN INTERACTIVE APPROACH,IBM
CORP.1969 ET J.WILEY 1970.

(96) N.GLICK ET R.SCHRADER =APL ON THE HONEYWELL 635.APL QUOTE
QUAD.VOL.3.N0.1.P.11.11 JUIN 1971 ET APL USERS CONFERENCE
WORKSHOP 3.RERKELEY 20-21 AVRIL 1971,APL QUOTEQUAD.VOL.30
NO.2/3.P.20-.30.1 OCT 1971.

(97) P.E.GRAY ET C.L.SEARLE=ELECTRONIC PRINCIPLES.PHYSICS.MODELS,
AND CIRCUITS,J.W1LEY 1969.

(99) L.GRELERG=APL/6500.AT m1CHU1:AN STATE UNIVERSITY.APL COOTL-
CUAD,VOL.3.0.11P.20-21+11 JUIN 1971.

(991 6.GR0 .4.CFOPLEYIB.HEPB El R.PALMER=APL AND REMOTE TERMINAL
USAGE FOR COMPUTER ASSISTED INSTRUCTION,MANCH:STER DATA FAIR

1969.

(100) H.R.HAEGI=EULFR A CAI-SYSTEM BASED ON APL,UNIVERSITY OF
ZURICH,1971.

1101) P.E.HAGEPTY=AN APL SYMBOL SET FOR MODEL 35 TELETYPES,APL
OUOTE-GDAD,VOL.2+NC.3.P.6-8.23 S7PTEMBRE 1970.

(102) A.HASSITT.J.W.IAGFSHULTE ET L.E.LYON=A MICROPROGRAMMED
APE VACHINE,APL QUOTE-COAD,VOL.31N0.1,

P,'' '70 ET APL USERS CONFERENCL wORKSHOP 3,
!L 1971.

(103) A.HASSITT.J.W.LAGESHULTE ET L.E.LYON=IMPLEMENTATION OF A
HIGH lEVEL LANGUAGE IACHINE,PREPRINTS,ACM 4TH ANNUAL WORK-
SHOP ON MICROPROGRAMMING113-14 SEPTEMBRE 1971.

(104) A.HASSITT.J.N.LAGESHULTE ET L.E.LYON=A MICROPROGRAMMED APL
1ACHINE,COLLOOUE-APL.PUB.IRIA.P.375-82.9-10 SEPT. 1971.

(105) A.HASFATT=MICROPROC.RAMM1NG AND HIGH LEVEL LANGUAGES.INTER-
NATIOt:AL IEEE COMPUTER CONFERENCEIP.91-92.SEPT.1971.

(106) A.HASSITT ET L.E.LYON=EFFICIENT EVALUATION OF ARRAY
SUBSCRIPTS OF AkrAYSIIB(1 JOURNAL OF RESEARCH AND DEVELOPMENT
VOL.16.NC.1tJANVIER 1972.13.45-57.

(107) W.S.HATCHER ET P.F.RCTHIER=UNE APPLICATION DU LANGAGE APL AU

PROLFME DF DEMONSTRATION DE THEOREHES PAR ORDINATEUR,COLLO-
OUE API.PARIS 9-10 SEPTLA13RE 1971,PUBLICATION IRIA,P.443-443

(108) R.M.HEIBERGER=APL FUNCTIONS FOR DATA ANALYSIS AND STATISTICS
RESEARCH REPORT CP-5,DEPT OF STATISTICS HARVARD UNIVERSITY.
31 MARS 1971.

(109) H.HELLERMAN=EXPERIMETAL PERSONALIZED ARRAY TRANSLATOR
SYSTEM.COmUt1ICATIONS OF THE ACM4VOL.7.A0.7.PP.433-438.
JUILLET 1964.

(110) H.HELLERMAN=DIGITAL COMPUTING SYSTEM PRINCIPLES.MC GRAW
HILL 1967.

(111) J.C.HENSON ET W.F.MANRY=APL-AN INTROtAILANTA PUBLIC SCHOOLS
ATLANTA,GEORGIA,2 NDE EDITION,AVRIL 1971.
VOIR APL OUOTE-OUAD.VOL.1,N0.3.P.3,0CTOPRE 1969.

(112) J.C.HEITZ ET H.C.NGUYENrAPPLICAT1ON DU LANGAGE APL A UN
PROBLEME DE RECHERCHE OPERATIONNELLE000LLOOUE APL.PUBL.IRIA
P.141-56.9-10 SEPT.1971.

(113) J.A.HIGGINS=PPOCEEDINGS OF THE APL USERS CONFERENCE AT
S.U.N.Y.,BINGHAMPTON,JUILLET 1969.

(114) G.HORNE ET R.PIPER=A DESIGN FOR A 32-BIT COMPUTER USING APL
STUDENTS AT POMONA COLLEGE ,CLAREMONT.CALIFORNIA,MAI 1969.

(115) S.HUNKA=APL-A COMPUTING LANGUAGE DESIGNED FOR THE USER.THE
BRITISH JOURNAL OF MATHEMATICAL AND STATISTICAL PSYCHOLOGY.
VOL.20,PART.211).249-60,NOVEMBRE 1967.

(116) S.HUNKA=USE OF APL COMPUTER TERMINALS IN THE EDMONTON PUBLIC
SCHOOLS.DIVISION OF EDUCATIONAL RESEARCH ,UNIVERSITY OF
ALBERTA,EDMONTON.CANADAtl AVRIL 1970-30 JUIN 1970 ET MARS
1971.

10

CHINfOrA UNIPORv PSEUOICRANOm .U' `ER GENP-RAT3R.
N1CATIONS CF

IVOL.91%;:).6,P.4.32-33,JU:%

(2181 r.E.IVERS.THE DESCRIPrfl% OF FINITE SE.1jE%TIAL
It.F3RTICN THECPY,4T1' fONDO% SY')POSIUM.C.CHERFY E.

10S1.

K.E.IVRSD';=4 PP3GRA"IS LANUACE.SJCC 1962.P.24)-2511

(120) K.E.IV(RSON=A PPOGAY.mING LANGUAGE.J.WILEY 1962.

1122) K.F.IVFPSON=A CO mv": LANGUAC-:E FOR HARD;.ARE,SOFL.AE AND
APPLICATIONS,EASTE% JOINT SCmPUTER CONFERENCE,P.1,:1-9 (RC749:DECEY3RE 1c,62.

(122) K.E,1 ,,,PPOGRAmMING NOTATION IN SYSTEMS 0051:.- ,.I®mSYST' JOURNA1_,VOL.2.N0.2.T.11"I-122..JUIN 1903.

(123) K.E.IVERSC.FOR',ALIE" IN PROGRANWINS LANGUAGE,IiiY CO('. E,T.J.ATLGN RESEARCH CEN1ER.RC ';92.2 JUILLEI

(124) K.E.IVERS0N=FOPALISm IN PROGRAIWI LANGUAGES,COUNICATIONS OF THE AC,VOL.7,NO.7,P.W.:-88tEVRIER 1(-)64..

(125) K.E.IVEPSON=PECENT APPLICATION OF A UNIVERSAL LANGUAGEriFIP
(fl.^:0RESSoNF'e:-1'ORK,24 AI 1965 ET IBM RESEARCH RC 511,T.J.
VjATSON RESEARCH CENTER,YORKTON HEIGHTS,N.Y..

(126) K.E.IVERSON.ELEMENTARY FUNCTIONS,AN ALGORITHMIC TREATMENT.SCIENCE_ RESEARCH ASSOCIATES.CHICAG0.1966.

(127) K.E.IVERS0%.1HE ROLE OF COmPUTEP IN TEACHINGIQUEEN'S PAPERSCr: PURE AND APPLIED
YATHEATICS,N0.1301968,KIG!.STON,ONTARIOCANADA.

(128) KIE.IVERSON=THE USE OF APL IN TEACHING,IBM CORPORATION,
FORM NO.320-0996-0,1969.

(129) K.E.IVERSON.THE USE OF APL IN STATISTICS.STATISTICAL COMPU
TATIONPROCEEDINGS OF THE CONFERENCE AT THE UNIVERSITY OF
WISCONSIN,AVRIL 1969,ACADEMIC PRESS,1969,R.C.MILTON ET
J.A.NELDER EDS.,P.285-294.

(130) ...IVERSON ET A.D.FALKOFF.AN INTRODUCTION TO APL0NEREM 1970.P.97-98 (40 TITRES).

(131) K.E.IVERSO=THE STORY OF APL,COMPUTING REPORT,VOL.6.N0.29P.
14-18,1970.

(1321 K.E.IVERSON=ELEMENTARY ALGEBRA,IBM PHILADELPHIA SCIENTIFIC
CENTER,TECHNICAL REPORT NO.320-3001.JUIN 1971.

(133) K.E.IVERSON=ALGEBRA AS A LANGUAGErCOLLOQUE APL,PARIS 9-10SEPTEMBRE 1971,IRIA.P.5-15.

(1341 K.E.IVERSON.APL IN EXPOSITION.TECHNICAL REPORT NO. 320-3010,IBM PHILADELPHIA SCIENTIFIC CENTER.1971.

(135) R.W.JAMIESON=ACTrAN ACTUARIAL PROGRAMMING LANGUAGEr5UN LIFE
MONTREAL,OUFBEC,CANADA,1970.

(1361 M.A.JENKINS1,THE SOLUTION OF LINEAR SYSTEMS OF EQUATIONS ANDLINEAR LEAST SQUARES PROBLEMS IN APL,IBM PHILADELPHIA
SCIENTIFIC CENTER,TECHNICAL REPORT NO.320-.29891JUIN 1970.

1137) D.C.JESSUP =POWER DELAY PRODUCT EVALUATION FOR COMBINATIONAL
LOGIC CIRCUITS,IBM RESEARCH CENTER,YORKTOWN HEIGHTS,N.Y.,20 JUIN 1959.RC-2513.

11

(13e) L.R.JOHNSON=SYSTEY STRUCTURE IN DATAIPROGRAMS AND COmPuTER,

PREM.IU:. HALL 1970.

(139) A.L.JONES=THE USE OF APL/363 IN mECHNICAL ANALYSIS.

PROCEEDINGS OF THE 1970 IEEE INTERNATIONAL COYPUTER
CONFERENCE 'NE:ccYORK 'JUNE 19701P.195-200.

(140) H.KATZAN=A PROSE GLOSSARY OF APLsCOMPUTER.S AND AUTOMATION.

P.39-42,40UT 1970.

(141) H.KATIAN.APL PROCRAING AND COMPUTEJ: TECHNILUE":..

VAN HOST RAND 1970.

(1421 H.KATZAN=APL USER'S GUIDE,VAN NOSTRAND.1971.
(VOIR CRITIQUES IEEE ON C.,OCT.71,P.1222-3).

(143) H.KATZAN=REPRESENTATION AND MANIPULATION OF DATA STRUCILARLb

IN APL;PPOCEEDINS OF A SYMPOSIUM ON DATA STRUCTURES IN':

RROGRAM"ING LANGUAGS.UNIVErSITY OF FLOIDA,GAINESYILLE

25-27 FEVRIER 1971,J.T.TOU ET P.WEGNER EDS.,PUBLICATION ACM.

(144) G.KILDALL=EXPE0IMENT5 IN LARGE SCALE COPUTEk DIRECT ACCt:SS

STORAGE MANIPULATION,TECH.
REPT.NO.69-01-1,CO1 PUTER SCINCE

GROUP,UNIVERSITY OF WASHINGTONISEATTLE 1NASHINOTON,

JANVIFR 1969.

(145) G.KILDALL=APL/9 5500 THELANGUAGE AND ITS IMPLEMENTATION.

TECH.REPT. NO.70-09-04.00YPUTER SCIENCE GROUP,117:1VLRSTrY CF

WAS.HINGTON,SEATTLE.ASHINGTONISEPTEDRE 1970.

(146) G.KILDALL=PRELIMINARY APL /E1 5500 MANUALIUNIVIRSITY OF

WASHINGTONICOMPUTEP CENTERsSEATTLE,WASHINGTON-1970.

(14T) G.KILDALL1L.SMITH,S.SWEDINE ET M.ZOZEL=UNIVERSITY OF

WASHINGTON APL/A5500 MANUAL.COMPUTER SCIENCE GROUP,UNIVER

sITy OF WASHINGTONISEATTLE,TECHNICAL REPORT N0.71-1-10,

JANVIER 1971.

(148) H.G.KOLSKY=PROBLEM FORMULATION USING APLIIBM SYSTEMS

JOURNAL.VOL.8,N0.3,P.204-17,1969(G.231-0018).

(149) K.L.KONNERTH=USE OF A TERMINAL SYSTEM FOR DATA ACQUISITION,

IBM JOURNAL OF RES.AND DEV.,VOL.13,NO.1,P.132- 138,JANVIER

1969.

(150) K.L.KONNERTH ET M.L.PHILLIPS=APL/1130 WITH GRAPHIC AND OTHER

I/O CAPABILITIES,IBM YORKTOWN HEIGHTS,20 JUILLET 1970,

RC 2964.

(151) K.KORN=APL USERS CONFERENCE AT SUNY,DATAMATION,NOV.1969.

(152) R.J.KORSAN=A PROPOSED APL CXTENSION,APL QUOTEQUAD,VOL.3,

NO. 2/3 tP21.-.23 1 OCT. 1 971

(153) S.E.KRUEGER ET T,P.MC MURCHIE=A PROGRAMMING LANGUAGE,

SCIENCE RESEARCH ASSOCIATES,CHICAG0,1968.

(154) S.E.KRUEGER FT T.D.MC MURCH1E=APL/1500 USER'S GUIDE,SCIENCE

RESEARCH ASSOCIATES,CHFCAC001968.

(155) G.LACOURLY ET L.LEBART=ANALYSE MULTIDIMENTIONNELLE INTERAC

TIVE D'UN ENSEMBLE DE DONNEES,COLLOQUE APL,9-10 SEPTENURE

1971.

(155) R.H.LATHWELL=THE IMPLEMENTATION OF APL/360;VIEW GRAPHS,
INTERNATIONAL SUMMER SCHOOL ON NEW TRENDS IN COMPUTER
PROGRAMING,20 AOUT 1968.

(157) R.H.LATHWELL=ARL/360 OPERATIONS MANUAL,IBM CORP.,1968.

12

158) R.H.LATHELL=APL/360 SYSTEM GENERATION AND LIBRARY MAINTE-
NANCEtIBm CORP.,1968,GH20 -0683.

159) P.H.LATHWLL ET J.E.MEZEI=A FORMAL DES RIPTION OF APL,PUU.
IRIA,P.1P1-215,7CLL00UE APL,9-10 SEPT. 971.

160) B.A.LAWS=A PARALLEL BCH DECODER,ONR TECH.RCONTRAGT
N 00014 67-C 04 77 1 5 JUIN 1970.

161) Y.LE BORGNE .APL/360 AU CENTRE D'ETUDES ET RECHERCHES DIIBM
FRANCEICOLLCOUE APL,PUB. IRIA,P.239-50,9-10 5E1)7.1971.

162) Y.LE BORGNE=ARL LANGAGE DE PROGRAMMATION DES MANAGERS,IBM
INFCRMATIQUE,1971.

163) Y.LE BORGNE ET V.RISO=LE LANGAGE APL/360,UN OUTIL POUR
LIINGENIEUR,LIONDE ELECTRIGUE,VOL.51,FASC.11,P.899-904,
DECEMBRE 1971.

164) J.H.LEF=ADVANCED DECISION-MAKING FOR PRIVATE REAL ESTATE AND
CONSTRUCTION (?ANAGEMENT-AN APL PROGRAM1RROCEEDINGS OF THE
SOUTHWESTERN IEEE CONFERENCE,AVRIL 1970,1).272-76.

165) H,A.LEKAN=INDEX TO COMPUTER ASSISTED INSTRUCTIONORD
HARCOURT BRACE JOVANOVIC,1971.

166) PAC,E=APL-A NATURAL LANGUAGE FOR ENGINEERING EDUCATION
PT.3,1EFE TRANS. ON EDOCATIONIVOL.E.-14,N0.4,P.180-83,
NOV. 1971.

167) LE PENVEN,Y.RAYNAUD,G.SIMIAN=APL/CII 10070,RAPPORT DU MARCHE
CR1 70.007,JUIN 1971.

168) G.LE BENVEN,Y.RAY(;AUD,G.SIMIAN ET H.MARTIN=APL/C11 10070.
RAPPORT DU MARCHE CRI 70.007tDECEMBRE 1971.

169) R.LIKNA;TZKY=APL FUNCTIONS FOR USE IN JUNIOR HIGH SCHOOL
MATHEMATICSIREPORT CAI 3-69,NOVEMBRE 1969,DIVISION OF EDUCA-
TIONAL RES':ARCH.FACULTY OF EDUCATION,THE UNIVERSITY OF
ALBERTA EDMONTON,ALBERTA,CANADA.

(170) Y.LIU=REVERSE OPERATOR IN APL,COMPUTING CENTER NEWS,VOL.4,
NO.41P.9-10,SYRACUSE UNIVERSITYll MARS 1971.

(171) R.A.LORIE=APL AS A LANGUAGE FOR HANDLING A RELATIONAL
DATA-BASE,IBM CORP.,CAMBRIDGE SCIENTIFIC CENTER,G320-2067,
MARS 1971.

(172) P.A.LORIE ET A.J.SYMONDS=USE OF A RELATIONAL ACCESS METHOD
UNDER APL,IBM CAVBRIDGE SCIENTIFIC CENTER,G320-2071,
MAI 1971,ET SYMPOSIUM ON DATA BASE SYSTEMS,COURANT INSTITU-
TE OF MATHEMATICAL SCIENCES.NAI 1971.

(173) R.A.LORIE ET A.J.SYMONDS=INTERACTIVE PROBLEM SOLVING USING
A RELATIONAL DATA-SASE IN APL,1971 INTERNATIONAL IEEE
COMPUTER CONF.,P.191-92.

(174) G.LOTTC=ON-LINE ANALYSIS OF SURVEY DATArIBM ASSD,MOHANSIC,
DEPARTMENT 983.

(175) T.LUTZ=APL-PROFILE OF A DIALOGUE LANGUAGE,COMPUTER PRAXIS,
VOL.4,N044,R.66-73,AVRIL 1971.

(176) T.MAC AULEY=CAL/APL COMPUTER ASSISTED LEARNING,A PROGRAMMING
LANGUAGE AUTHOR'S MANUAL,INFORMATION SERVICES AND COMPUTER
FACILITY,ORANGE COAST JUNIOR COLLEGE D ISTR I CT 'COSTA MESA,
CALIFORNIA,MAI 1969.

(177) H.P.MACON=A SURVEY OF APL COMPATIBLE TERMINALS,APL QUOTE-.
QUAD,VOL.3,N0.2/3,P.12-20,1 OCT.1971.

13

(178) G.v.ARTIN=LP,! LANGAGE DE MANIPULATION FORMELLE,PUB.IRIAI
P.405-431,C0LLCOUE APLo9-10 SEPTEM3RE 1971.

(179) H.ARTIN.SIMULATION EN APL DES COMMANDES D'UN SYSTEME DE
GESTION DE FICHIERS POUR LE SYSTEME APL.CENTRE D'INFORMATI
DUE DE TOULCUSEcJUIN 1971.

(180) P.MAURICE=DESCRI'PTIO\ DU SYSTEME ;60 A L'AIDE DE LA NOTATION
D'IVERSONoDIPLOME D'I%GENIEUR ENSEIHToTOULQUSE 1968.

(181) P.MAURICE FT P.C.SCHOLL.UN INTERPRETEUR Dtt '0L POUR
LE CII 90-80oDULLETIN DE .0

(18?) R.AURICE0Y.RAYNAUD ET G.SIMIA%=REALISATION D'APL A L'UNI
VERSITE DE TOULOUSEoCOLLOQUE APLo9-10 SEPTEMURE 1971.

(1C3) G.K.YC AULIFFE =&PL FAST FOURIEt PROGRAM1I8M RESEARCH CENTER
YOKTOWN HEIGHTS,N,Y.,ARS 197C.RC- 2L)32.

(184/ D.MC,CRACKFN=: .7HER :.LLDATAMATION,VQL.16,N0a11oP.53-55,
15 SEPTENTRE

(16'-) A.MC EWAN ET r.-WATSON=,APL/360 RECURSED,PART,1.APL QUOTEQUAD
VOL.2010.2,16110 lUILLET 1970.

(1E6) T.D.MC MUrtCHI1 =4PLAUSE. FOR APLICOmPUTERS AND AUTOMATION,
VOL1191N0,3,PARS

('876 T.D.C MURCHIE El S.E.KRUEGER ET H.T.LIPPERT=A PROGRAMMING
LANCUAGE/1509.A.716-733,30 NOVE'BRE 1970.

T.D.YC mURCH,7=A LIMITED CHARACTER APL SYMBOLISM,5IGPLAN
NOTICES,VOL.C.1,1971.

(189) T.D.MC ".'.URCHIE FT D.B.THOMAS=APLJ1500 FILE ACCESS SUBkOUTINE
PACKAGE oAD. '1 *1 ER FEVRIER 19,71.

(VJ) T.D.YC H(JRCHTE OF APL/1500 FUNCTIONS
SYSTE FUNCTITMS Z717 .737.1 FEVRIER 1971.

(1c)1) H.MELS=APL FOR 6:1=':ERW''E'NT TECHNOLOGY PROBLEMSoIBM NACHRIo
VOL 121 t\i0. 20.5 646-54-tFEVRIER 1971.

(192!)1.5.meMALBAN0 =1.1iSHRED CRITICAL PATH CALCULATIONS,
320- 3219,AOUT 1967.

(193; M.MONTALBANO=HIGHSPEED CALCULATION OF THE CRITICAL PATHS
OF LARGE NET),ORKS,IBM SYSTEMS JOURNALoVOL.6oN0.3,P.163-191,
1967.

(1-7;1.4) M.S.mONTALBANO=CONVERSATONAL LINEAR PROGRAMMINGA USER'S
MANUAL FOR LPAPL,COMPUTE"S IN MA'N'AGEMENT EDUCATION.REPORT
NO.10BM PALO ALTO SCIE%7IFIC CENTER,320-32720MARS 1970.

(195) .R.ORE,YIRAYNAUD ET G.S1TAN.UN INTERPRETEUR EN MODE CONVER
TINEL POUR LA NOTATIO% D'IVERSON4APPLICATION A LA DESCRIP
TION FORMELLE DE SYSTEMES,GRENOBLE,OCTOBRE 1967.

(196) R.MOREoY.G.RAYNAUD ET O,.P.SIMIAM=UN LANGAGE. CONVERSATIONNEL
POUR L'AIDE A LA CONCEPTION ET A LA REALISATION DES SYSTEMES
INFORMATIQUES,COLLOOUE SUR LA MTCROELECTRONIQUE..TOULOUSE,'
)0.'4",RS 1969.

(197) R..MOREoY.G.RAYNAUD ET SIMIAN=UN LANGAGE PROGRAMMATION
CONVERSATIONNEL,COLLCOUtL INTERNATIONAL SUR LA TELEINFOR
VATTIQUE0.168,TOME IT0EDITTONS CHIRONo1969.

(198/ P.MORE=CONTRIEt'' ON A LA RE,ALISATION D'UN INTERPRETEUR APL
CONVERSATIONNEL, HESE I.MIVERSITE DE TOULSEIJANVIER 1971.

19

(199) A.MUKHOPADHYAY ET G.SCHMITZ=MINP.IIZATION OF EXCLUSIVE-OR AND
LOGICAL ECUIVALENCE SWITCHING NETWORKS.IEEE TRANS. ON
COMPUTERStVOL.C-19,N0.2tP.132-40tFEVRIER 1970.

(200) H.J..1YERS ET M.Y.HSIA0nA", APL ALGORITHM FOR CALCULATING
BOOLEAN DIF-EPENCE,AUTOMATIC SUPPORT SYSTEMS SYMPOSIUM FUR
ADVANCED MAITt,INAPILITY'--LOUIStMOtNOVEMBRE 1968.
P.5 r-1 A 5 D-

(201) W.H.NIEHOFrrA HYPOTHETICAL 32-BIT PROCESSOR FOR SYSTEMS
TRAINING-ITS APL/360 DESCRIPTION AND SIOLATIONtIBM SYSTEMS'
DEVELOPMENT DIVISION,ENDICOTT,N.Y.,22 MAI 1'i70tTR 01.1316.

(202) J.L.CWENS=BULK I/O AND COMMUNICATIONS WITH LIVERvORE TIME
SHARING sysTEY,APL CUOTE-QUADIVOL.3,NO.itP.7-3o11 JUIN 1971
E7 APL USERS CONFERENCE WORKSHOP 3tBERKELLY 20-21 AVRIL 1971

(207) G.L.NOGUEZ ET D.m.PECCOUD=AN ARRAY PROCCASUR DESIGN FOR
APL-LIKE DATA STRUCTUREcIFIP CONGRESS 1971tBOOKLET TA-4.

1(204) P.D.PAGE=AN ON-LINE PROOF CHECKER OPERATING UNDER APL /360-
APL QUOTE-OUAD,VOL.3,N0.1,P.4-5,11 JUIN 1971 ET APL USER'S
CONFURFCE WORKSHOP 3t9ERKELEY 20-21 AVRIL 1971,APL QUOTE-
OUADtVC1.3tN0.2/3tP.3074,1 OCT.1971.

(205) S.r)AKIN.APL/360 REFERECF MANUAL,SCIENCE RESEARCH ASSOCIATES
PALO ALTOtCALIII'RNIA12 ":DE EDITIONt1971.

(206) J.D.PACUET=SIMPLIFICATION DES FONCTIONS BOOLEENNE A L'AIDE
DES MATRICES A N DIMENSIONS-THLSE.UNIVERSITE LAVALIOUEBECt
CANADA 1969.

(207) D.M.PECCOUD ET G.L.NOGUEZ=AN ARRAY PROCESSOR DESIGN FOR APL
LIKE DATA STRUCTUREStIFIP CONGRESS 1971.NORTH HOLLAND.

(208) P.PENFIELD=MARTHA USER'S MANUALtELECTRODYNAMICS MEMO NO.6,
21 SEPT. 1970,MIT RESEARCH LABORATORY OF ELECTRONICS.

(209) P.PENFIELD=ADDFNDUM TO MARTHA USER'S MANUAL,ELECTRODYNAMICS
MEMO NO.12i13 NOV11970,MIT RESEARCH LABORATORY OF
ELECTRONICS.

(210) P.PENFIELD=GENERAL PURPOSE ELECTRIC - CIRCUIT ANALYZER IMBED
DED IN APL.ELECTRODYNAMICS MEMO NO.15tRESEARCH LAB.OF ELEC-
TRONICS,MIT,26 FEVRIER 1971.

(211) PoPENFIELD=A SET OF APL PROGRAMS FOR USE IN NETWORK THEORY,
APL OUOTE-OUAD,VOL.3,N0e1tP.4t11 JUIN 1971 ET APL USER'S
CONFERENCE WORKSHOP 3,BERKELEYt20-21 AVRIL 1971.

et'

(2121' R.PENFIELD=GENERAL PURPOSE NETWORK ANALYSIS'USING WIRTNG
OPERATORS,IEEE CONFERENCE ON ELECTRICAL NETWORK THEORY,1971,
P.116-117.

(213) P.PENFIELD=MARTHA USER'S MANUAL,THE MIT PRESS 1971.

(214) P.PENFIELD.DESCRIPTION OF ELECTRICAL NETWORKS USING WIRING
OPERATORS,PROCEEDINGS OF THE ICEEtVOL.60,N0.1oP.49-53,
JANVIER 1972o

(215) A.PERLIS=APL AS A CONVENTIONAL LANGUAGE-WHAT IS MISSING APL
OUOTE-OUADoVOL.3oN0.1,P.3.-4,11 JUIN 1971 ET APL USERS
CONFERENCE WORKSHOP 3,0ERKELEY 20 -21 AVRIL 1971.

(216) A.J.PERLIStR.D.FENNELL,F.J.POLLACK,W.R.PRICE, ET M.F.RIZZO=
CONVERSATIONAL PROGRAMMING-APL,AN IMPLEMENTATION IN BLISS,
AD.729-941,JUIN 1971.

(217) J.PLOTKE=MINIRERT,A TERMINAL CONTROLLED CRITICAL PATH
TECHWOUE,IBM SMD,DEPARTMENT 847sDIVI5ION 32tHARRISONa

15'

(218) ',RTOUZOS.I.LEE ET K ,-"'TH= ON IMPORTANT
AS CONCERNING COMPUTE6 IN ELECTRICAL ENGINEER

.EDUCAii0;10IEEE TRANSACTIONS ON EDUCATION,VOL.E-14,1\0.4,
P.169-14',NOVEMORE 1971.

(219) W.PRAGER=AN INTRODUCTION TO APL,ALLYN AND BACON INC.,1970.

(220) T.H.RUCKETT=NCTES ON THE INSTALLATION OF APL/OS,NEW MEXICO
STATE UNIV,ERSITY,LAS CRUCES,NEW MEXICO,REPORT(505) 646-3439

1221) S.M.RAUCHER=INTRODUCTION TO APLVIDEOTAPES,IBM CORP.,1968.

(222) S.M.RAUCHER=APL AND ITS USE IN THE CLASSROOM.JOURNAL OF THE
ASSOCIATION FOR EDUCATION DATA SYSTEMS,DECEMBRE 1968.

(223) J.C.RAULT=SYSTEMES APL,RAPPORT INTERNE THOMSON CSF,LCR DR5,
NO.1568,MAR5 1971.

(224) Y.RAYNAUD=APLISON IMPLANTATION,SON UTILISATION POUR L'AIDE
A LA CONCEPTION DES SYSTEMES DE TRAITEMENT DE L'INFORMATION,
BULLETIN DE L'IRIA.MARS 1971,P.6 -98.

(225) R.J.D.RFEVES=APL,A POTENTIAL LIABILITY,DATAMATION,
15 SEPTEMBRE 1971,P.71 -72.

(26) H.A.REICH=AN EXPERIMENTAL SYSTEM FOR TIME-.SHARED.ON-.LINE
DATA ACOUISITION,IBM JL OF RES. AND DEVo,VOL.13.N0.1.P.114
118,1969.

(227) B.RCBINET=SUR UN LANGAGE CONVERSATIONNEL,PROGRES ET SCIENCE,
NO.4,19700

(228) B.ROBINET=LE LANGAGE APL,OU L'ART DE PROGRAMMER EN LIBERTE.
01INFORMATICUE.P.45-50.11 DECEMBRE 1970.

(229) B.ROPINETO.ARLFTTAZGIRARD ET J.MICHEL=LE LANGAGE
D'IVERSON.RAPPORT DGRST NO.69.01-58G1PARIS.JUIN 1971.

(230) B.ROBINET=SEMANTIQUE D'AFLoCOLLOQUE APL,PUBIRIA.P.217-232.
9-10 SEPT.1971.

12311 8.208INET.J.C.GIRARD ET R.ARLETTAZ=UN COMPILATEUR INCRE
ENTIEL P'APL.COLLOOUE APL.PUB.IRIA.P.315-337,9-10 SEPT.1971

(232) B.ROINET=LE LANGAGE APL,EDITIONS TECHNIP 1971.

(233) B.ROBINET=SEMANTIOUE'DES TABLEAUX APPLICATION AU LANGAGE
APL,THESE DE 3EME CYCLE.UNIVERSITE DE PARIS VI,28 FEVRIER
-1972.

(234) ',4.M.RODGERS=PART 4 A PRELIMINARY SURVEY OF GRAPHICAL
DISPLAY SYSTEMS,AD-716-593,JUIN 1970.

(235) A.J.ROSE=VIDEOTAPED APL COURSErIBM CORP.,1967.

(2361 AaJOOSE=TEACHING THE APL /350 TERMINAL SYSTEM,IB) +i CORPooRC
2184.28 ACUT 1968.T.J.WATSON RESEARCH CENTER.YORKTOwN
HEIGHTS N.Y..

(2371 A.J.ROSE=APL FOR USERS OF BASIC,SCIENTIFIC TIMESHARING
CORP.IWASHINGTON.D.C..

(238) BoROSENKRANDS4PL EXERCISES,IbM DENMARK.
] ii

(239) B.ROSENKRANDSGRAPHICS BY AP,OPUB.IRIA.P.91-113,COLLOOUE APL
9-10 SEPTEMBRE'1971.

(240) J.P.ROTH=DIAGNOSIS OF AUTOMATA FAILURES0A CALCULUS AND A
METHOD,IBM JOURNAL OF RESEARCH AND DEVELOPMENT.VOL.10,
P.278-91,JUILLET 1966.

16

(241) J,P.ROTHoW.G.BOURICIUS ET P.R.SCHNEIDCR.PROGRAMMED
ALGORITHMS TO COMPUTE TESTS TO DETECT AND DISTINGUISH
BETWEEN FAILURES IN LOGIC CIRCUITS,IEEE TRANSACTIONS ON EC,
VOL,EC-16oN0.5oP.567-800CT.1967.

(242) D.RUDBERGoD.BRUNSVOLD ET M.HITCH=APL/MSUBTM,USER'S MANUAL,
A SUPPLEMENT TO THE APL/360oREFERENCE MANUAL-00R APL /.360
PRIMER,AUTOMNE 1970.

(243) D.RUDBFRG=APLoA NATURAL LANGUAGE FOR ENGINEERING EDUCATION
PT IV,IEEE TRANS, ON EDUCATIONoVOL.E-14oN0.4,P.183-85,
NOV. 1971.

(244) D.RUETER=ARRAY FOR APLDATAMATIONo15 NOV.1971tP.17.

(245) G.RUGGIU=SEMANTIOUE DES LANGAGES DE PROGRAMMAIION ET INTER
PRETATION GLOBALE DES EXPRESSIONS,C.R. ACAD. SC.,PARISo
TOME 273SERIE AoP.1271-1274,20 DECEMBRE 1971 ,ET TOME 274
SERIE A03.100-103,3 ,JANVIER 1972.

(246) G.RUGGIU=DESCRIPTION SEMANTIQUE DES FONCTIONS PRIMITIVES
D'APL,REVUE TECHNIQUE THOMSONCSB,MARS 1972.

(247) J.RYAN=APL/700,AN APL IMPLEMENTATION FOR THE BURROUGHS
6700 AND 7700APL QUOTEGUAD,VOL.3010.1oP.12t11 JUIN 1971
ET APL USERS CONFERENCE WORKSHOP 3,BERKELEY 20-21 AVRIL 1971

(248). J.RYAN=GENERALIZED LISTS AND OTHER EXTENSIONStAPL QUOTEQUAD
VOL.3oN0.1tP.8-10 JUIN 1971.

(249) J.SAMMET=PROGRAMMING LANGUAGES,HISTORY AND FUNDAMENTALS,
PRENTICE HALL,1969,P.247-53.

(250) D.SANT=THE M RX 1240 COMMUNICATION TERMINAL AND 1270 TRANS
MISSION CONTROL UNIT,APL QUOTEQUADIVOL.3,N0.10P.13,11 JUIN
1971 ET APL USERS CONFERENCE WORKSHOP 3,BERKELEY,.

AVRIL 1971.

1251) R.O.SCHMIDT=A COLLECTION OF WALSH ANALYSIS PROGRAMS,IEEE
TRANSACTIONS (N ELECTRCMAGNETIC COMPATIBILITYsVOL4EMC-13t
N0,303.88-940AOUT 1971.

(252) PcSCHOLL=PROBLEMES RELATIFS A L'ANALYSE.SYNTAXIQUE DE LA
NOTATION D'IVERSON,DIPLOE D'INGENIEUR ENSEIHT,TOULOUSE,1968

(253) P.SCHOLL ET Y.RAYNAUD=PROBLEMES RELATIFS A L'ANALYSE SYNTA
xlquE DE LA NOTATION D'IVERSONtCENTRE D!INFORMATIQUE DE
TOULOUSEtANNEE 1967-68.

(254) G.P.SCHREIBER ET R.PCLIVKA=EXPERIENCES AND OBSERVATIONS
WITH A SELFTEACHING COURSE IN APL,COLLOQUE
9 -10 SEPTEMBRE 1971tPUB.IRIAtP.77-90.

(255) C.SEABERG=COMPUTER ASSISTED FORECASTING HOW BUSINESS IS
USING APL CANADIAN DATASYSTEMS
JANVIER 1971.

(256) C.SEABERG=APL IN FINANCIAL FORECASTING IS BASE FOR EVENTUAL
MIStCANADIAN DATASYSTEMS,VOLOtN0.20450..63,FEVRIER 1971.

(25 ?) C.L.SEARLE=TEACHING OF TRANSISTOR CIRCUIT DESIGN USING A
DIGITAL COMPUTER,IEEE TRANSACTIONS ON EDUCATION,VOL.E12,N0.3
P.216-22tSEPTEMBRE 1969.

(258) C.L.SEARLE=APL,A NATURAL LANGUAGE FOR ENGINEERING EDUCATION
PT IV IEEE TRANS. ON EDUCATIONtVOL.E-14,N0.4tP.185,NOV.1971.

(259) C.L.SEARLE=TRANSISTOR AMPLIFIER DESIGN A STUDY IN WHEN NOT
TO USE THE COMPUTER,IEEE TRANSACTIONS ON EDUCATION,1972.

17

(260) E.SHARCN=AN APL/360 INCOME TAX PROGRAM,THE DESCRIPTION OF
DATA PROCESSING DROCEDURES,IBM CO9P.,MAI 1968,320-3242.

(261) 16\ .SHARP=A BRIEF HISTORY CF APL,CANADIAN DATASYSTEMS0P.44
47 T 74,FEVRIER 1970.

(262) I.P.SHA "1'51+ E OF APL TO BENEFIT FROM A NEW FILE
SYSTEM,CANADIAN DATASY EMS,P.44..45,85,MARS 1970.

(263) K.W.SMILLIE=SOME APL PROGRAMS FOR STATISTICAL CALCULATIONS,
DEPT. OF COMPUTING SCIENCE,UNI,VERSITY OF ALBERTA,EDMONTON,
CANADA,PUBLICATION NC.6,1967.

(264) K.W.SMILLIE=STATPACK 1,AN APL STATISTICAL PACKAGE,PUB.N0.9,
DEPT. OF COMPUTING SC1ENCE,UNIVERSITY OF ALBERTA,EDMONTON.
CANADA,JANVIER 1968.

(265) K.W.SMILLIE=AM APL ALGORITHM FOR THE CRITICAL PATH,QUATERLY
BULLETIN OF THE COMPUTER SOCIETY OF CANAD,VOL.8,N0 2,
P.6-13,PRINTENPS 19684.

(266) K.W.SMILLIF=STATPNCK 2,AN APL STATISTICAL PACKAGErDEOT OF
COMPUTING SCIFJ:CE.U:':IVERSITY CF ALBERTA,PU(1.17,FEVI;IER 1969,
EDMONTON,ALBER1ArCANA!7IA.

(267) K.W.S.VILLIF=SOME APL ALGORITHMS FOR ORTHOGONAL FACTORIAL
EXPE5PIMENTS,DEPT. OF CO..PUTING SCIENCF.PUBLICATION NO.18,
UNIVERSITY OF AtBERTA,ED:'0N10::,ALBERTA,CAAA,SJIN 1969.

(268) K.W.SMILLIE=THE APL LANGUAGE AND STATISTICAL COMPUTATIONS,
COMPUTER BULLETIN,VOL.13,N0.8.P.396-897,AOUT 1969.

(269) K.W.SMILLIF=AN INTRODUCTION TO APL/360 WITH SOME STATISTICAL
APPLICATIONSIDEPT OF COMPUTING SCIENCEIPOBLICATION NO.19,
UNIVERSITY OF ALBERTAIEDONTON,ALBERTA,CANADA,JANVIER 197J.

(270) K.W.SMILLIE=STATISTICAL PROGRAMS IN APL/360,COMPUTER BULLE
TINIVOL.14,NO.51p.151-152,MAI 1970.

(271) K.w.smILLIE=ApL/360 WITH STATISTICAL EXAMPLES(NON PUBLIE)
1971.

(272) K.W.SMILLIF=APL AND STATISTICS,PROGRAMS OR IHSIGHT,COLLOOUE
APL,PUBLICATION IRIA,Pc17-35,PARIS,9-10 SEPT.1971.

(273) V.N.SPADAVECCH'IA,P.C.BERRY ET G.BARTOLI=AN ABSTRACT MACHINE
FOR THE INTRODUCTION 30 COMPUTER SCII-NCE,COLLOOUE APLI9-10
SEPT. 1971,PUBLICATION IRIA,P.273-78c
(VOIR PERRY RAPPORT POBLIE,FEVRIER 197.'2).

(274) T.A.STANDISH=AN ESSAY ON APL,DEPARTMENT OF COMPUTER SCIENCE,
CARNEGIEMELLON UNIVERSITY,PITTSIRGH,MAR3 1969.

(275) G.P.STICKELER=REALWORLD APLIDATAMATION,1- DEC. 1971,P.19.

(276) R.K.STOCKWELL FT K.E.VAN BEE=USE OF APL TO IMPLEMENT ALGO
RITHMS FOR ,SPARSE LINEAR SYSTEMS,NEREM 1970,P.113-119.

(277) E.A.STOHR=SIVULATION OF SOME APL OPERATORSIREPORT LR-16,
FEVRIER 19711CFATER FOR RESEARCH IN MANAGEMENT SCIENCE,
UNIVERSITY OF CALIFORNIA,BERKELEY,CALIFORNIA.

(278) 0.STUTZ=APL/360 A TIMESHARING SERVICE WITH A MODERN PROBLEM
LANGUAGE.APL/360 A FORM OF SUBSCRIBER OPERATION WITH A
MODERN PROBLEM LANGUAGE,IBM NACHRICHTEN.
VOi420,N0.199,P.79-83,FFVRIER 1970.
V01420,NO.200,P.164-9,AVRIL 1970.

(279) Y.SUNDBLAD=THE ACKERMAN FUNCTION,A THEORETICAL COMPUTA
TIONAL AND FORMULA MANIPULATIVE-STUDY,BITIVOL.11,N0.1,1971.

18

(280) A.J.SURKAN.SYMI1OLIC PCLY;OMlAL OPERATIONS Wirt(APL.IBM

JOURNAL OF RESEARCH AND DEVELOPMENT.VOL.13.N0.20P.209-211
MARS 1969.

(281) A.J.SURKAN=DISCRETE FAST FCURIER TRANSFORMATION MADE SIMPLE

BY A SINGLE RELIABLE APL FUNCTION.I3M RESEARCH CENTER,
YORKTOWN HEIGHTS.N.Y,r22 ACUT 1969oRC-2591.

(282) YeTALLINEAU=OUFLCUES REFLEXIONS SUR 1,5 COLLOQUE APL

L'IRIA,INFORMATIOUE ET GESTION,NOV.71.P.50.

(283) -Y.TALLINEAU=LtAPL UN LANGAGE ADAPTE A LA GESTION,
INFORMATIQUE ET GESTION.N0.25.P.79-82.FEVRIER 1971.

(284) A.TAYLOR =APL,A COMPLEX CR SIMPLE LANGJAGr.COMPUTERWORLD.
1 AVRIL 1970.

(285) W.G.THISTLE AND D.S.OALBRAITH=DIFFERENCES BETWEEN DREV APL

AND IBM APL /360,REPORT (?REV ''.2115/71 ,DEFENSE RESEARCH

ESTABLISHMENT.VALCARTIEP.OUEBEC.CANADA.

(286) R.D.THORNTON.COMPUTERFLAVORED CIRCUIT THEORYtIEEE TRANS
ACTIONS ON EDUCATIO.VOL.E."12.N0.3.0.219-222.SEPTEMBRE 1969.

(287) K.J.THURRER ET J.W.MYRNA=SYSTEM DESIGN OF A CELLULAR APL
COMPUTER IEEE TRANSACTIONS ON COMPUTERS.VOL.C-19.N0.4.P.291

303.AVRIC 1970.

(288) B.TUCKERNAN=A STUDY OF THE VIGENERE-VERNAM SINGLE AND

MULTIPLE LOOP ENGINEERING SYSTEMS.IBM RESEARCH REPORT

(BC 2879)MAI 1970.

(289) H.VAN HEDEL=AN APL BATCH PROCESSOR,COLLOOUE APL,PUB.IRJA,

P.339- 64,9 -10 SEPT.1971.

(290) u.m.vom MAYDELL-TAN INTRODUCTION TO PROBABILITY usINc, APL,

DEPT.OF COMPUTING SCIENCE.PUBLICATION NO.21.UNIVERSITY CF
ALBFRTA.EDMONTON.ALBERTA.CANADA.JUIN 1970.

(291) P.N.WAH1=AIMSAPPLIED INFORMATION AND MANAGEMENT SIMULATION,

A GENERAL BUSINESS SIMULATION IN APL,IBM CORR.oCAMBIDGE
SCIENTIFIC cENTER,o320-2066,AvRIL 1971.

(292) J.WILLIAMS.CON2ITIONAL BRANCH APL COMPILERcAPL QUOTEQUAD.
VOL.3.NO.1.P.5-6.11 JUIN 1971 ET APL USERS CONFERENCE
WORKSHOP 3.BERKELEY.20-21 AVRIL 1971.

(293) L.J.WOODRUM=INTFRNAL SORTING WITH MINIMAL COMPARING.IBM

SYSTEMS JOURNAL.VOL.8.N0.3.P.189-203.1969.

(294) L.J.WOODRUM=A MODEL OF FLOATING BUFFERING.IBM SYSTEMS JOUR
,'

NAL.VOLe9.NO.2.P.118..-144.1970.

(295) R.ZAKS,D.STEINGART ET J.MOORE=A FIRMWARE APL TIMESHARING

SYSTEM,SJCC 1971.P.179-90.

(296) R.ZAKS ET D.STE1NGART=A LANGUAGE MACHINE.APL OUOTEQUAD,
VOL.3010.1,Pe6 ET APL USERS CONFERENCE WORKSHOP 3,BERKELEY.

20-21 AVRIL.APL QUOTEGUAD.VOL.3.N0.2/3.P.34-3901 OCT.71.

(297) R.ZAKS= MICRCPROGRAW.MEI) APLONTERNATIONAL IEEE COMPUTER

CONFERENCE.P.192-4.SEPT. 1971.

(298) MoZOZELUNIVERSITY OF WASHINGTON IMPLEMENTATION.APL QUOTE.
QUAD0VOL.2.NC.4.P.6-7.NOVEMBRE 1970.

(299) J.A.HIGGINS=PROCEEDINGS OF THE APL USERS CONFERENCE AT SUN?
BINGHAMPTON,JUILLET 1969.

(300) APL USERS CONFERENCE WORKSHOP 3.BERKELEY.20-21 AVRIL 1971,

VOIR APL QUOTEQUAD,VOL.3.110.1,P.3-13911 JUIN 1971.

19

ANoNymous

(301) KIDNEY MATCHED BY COMPUTER,NEWS RRIEFSIDATAMATION
AVRIL 1970,P.215-16.

(302) STORY OF APLAN INTERVIEW WITH DR K.IVERSON,COMPUTERWORLD,
1 AVRIL 1970.

(303). CREATING PLAIN TALK FOR COMPUTERSIA PASSAON FOR PRECISION
LEADS KEN IVERSON TO AN EASYTOUSE LANGUAGE,IBM MAGAZINE,
VOL.2,NC.3,0.11-12;16 FEVRIER 1970.

(304) COMPUTING NEWSLETTERS FCR INSTRUCTORS OF DATA PROCESSING ?'

MARS 1971 ET 1972.

(305) COMPUTERWORLD=EDITORIAL,16 AVRIL 1959.

(306) LE CULTE DE L'APL=INFORMATIOUE FT GESTION,OCT. 1971,P.11 -12.

(307) ..UN TERMINAL SPECIAL APL INFORMATIOUE ET GESTIONcOCTOBRE 1911
P.24,(TERMINAL OLIVETTI TE.338.ARL).

PERIODICALS

(308) APL NEWSLETTERS,I.P.SHARP ASSOCIATES,MONTHLY PUBLICATION IN
CANADIAN DATASYSTEMS.

(309) APL NEWSLETTER=WeJURAN EDITOR4PROPRIETARY COMPUTER SYSTEMbo
1662 SOUTH SATICOY STREET,VAN NUYS,CALIFORNIA,91406.

(310) APL QUOTE QUAD
EDITORS=A.T.MC.EWAN ET D.W.A.WATSON
LAKEHEAD UNIVERSITY, THUNDER BAY,ONTARIO
DITRIBUTOR=G.H.FOSTERISYRACUSE UNIVERSITY,SYRACUSE,
NEWYORK.USA.

(311) SEAS APL WORKING COMMITTEE=

SECRETARY=NIELS GELLERT,NEUCC.TECHNICAL UNIVERSITY OF
DENMARK,2800 LYNGBY,DENMARK.

CHAIRMAN=P.S.ABPAYSICEGOSINFORMATIOUEISERVICE APL,
14 RUE ANATOLE FRANCE,92 PUTEAUX.FRANCE.

IBM BROCHURES

(312) APL/160 OS AND APL/360 DOS GENERAL INFORMATION MANUAL,
DECEMBRE 1970.OH20-0850.

(313) APL/360 OS AND APL/360 DOS USER'S MANUAL,DECEMBRE 1970,
SH20-0906

(314) APL/360 OS AND APL/360 DOS SYSTEM MANUAL,FIRST EDITION.
JUIN 1971,LY20-0678.

(315) APL /360 DOS OPERATIONS MANUALISEPTEMBRE 1969,H20 -0685.

(316) APL/360 DOS SYSTEM GENERATION MANUAL,SEPTEMBRE 1969,
H2O-0686.

(317) APL/360 DOS OPERATIONS AND INSTALLATION MANUAL,DECEMBRE 1970
SH20-0938'.

(318) APL/360 OS OPERATIONS AND INSTALLATION MANUAL,DECEMBRE 1970,
SH20-0890.

(319) APL/360 TYPE III PROGRAM DOCUMENTATIONIREPORT 360O.03.3.007.

(320) APL/360 PRIMER,SECONDE EDITION,JANVIER 1970,GH2O -0689.

(321) APL/360 USER'S MANUALtMARS 1970,GH20..-.0683.

(32?) APL/360 BENUTZFRHAND3UCH.GH12-1C30.

(323) APL AUDIO EDUCATION PACKAGE.? VOLUMES.1971.
SR20-9382.52-20-9383.SR20-93134.

(324) APL REFERENCE DATA CARD,S210-0007.

(325) APL KEYBOARD TABS,GX20-1783.

(326) INTRODUCTION TO mIN1PERTITHIED EDITICNIMAI 1971.CH20-0852.

(377) API. CAI GUIDE AND PROBLEM BcoK,Irmi SDD LABORATORY EDUCATION
DEPARTMENT.ENDICOTTYe.SEPTERRE 1970.

(328) APL/1130 KEYBOARD TABS,GX2G -1784.

(329) APL/1130 PRIMER,STUDENT TEXT.SECOMD EDITION MARS 1969.
GGC20-1697.

(330) APL/1130 CONTRIBUTED PROGRAM LIBRARY.REPORT 1130-03.3.001.

(331) IBM mINIPERT,DATAmATION.1 MARS 1971,P.59.

(332) KEC.(KOMMUNERNCS EDBCENTRA(.,COPENHAGEN)
MA05 USER'S PROGRAM DESCRIPTION.
KECPERT

(333) INDUSTRIAL COMPUTER SYSTEMS=MINIMANUAL,A CONDENSED INTRO
DUCTION TO APL.254 ';LEST 31 STREETIN.Y. 1301.

(334) PROPRIETARY COMPUTER SYSTEYSIINC.=PCS/APL PUBLIC LIBRARY
GUIDEIFEVRIER 1971.

FMS CONCEPTS,1970e

(335) STSC=APL/360 PACKAGE GEARED TO SHARED LARGE rILESICOMPUTER
WORLD,17 JUIN 1970.P.24.

(336) MISPAKMANAGEMENT INFOR'/ATION SYSTEM,APL PLUS.

(337) SUN LIFE MONTREAL,ACTUARIAL PACKAGE.

(338) THE COMPUTER COMPANY.RICHMOND,VIRGINIA=FMSFILE MANAGEMENT
SYSTEMS.1970.

(339) UNIVERSITY OF MARYLAND=APL/1100.

(340) XDS=APL/UTS.DATAMATION.NOVEMBRE 1971.

21

AN APL APPROACH TO INTERACTIVE DISPLAY TERMINAL GRAPHICS

W. H. NieY,off and A. L. Jones
IBM Corporation

Systems Development Division
P. 0. Box b

Endicott, New York 13760

ABSTRACT

Large, generalized graphics packages, as well as specialized graphic application packages,
have not been especially successful in their penetration into the daily computing habits otcomputer users. We believe that this has been because of the relatively poor availability of
display terminal equipment and limited useability of the programming support_ An object lesson
is provided by the acceptance of the APL language and its System/360 implementation. Its
penetration into the working habits of users has been dramatic.

APL /36U GRAPHPAK* is an integrated collection of functions, implemented entirely within
APL, that couples the facilities of APL/360 with economical, commercially available hardware toimplement a highly interactive, easy to use graphic display facility. It attempts to employ the
same attributes of APL that make APL attractive to yield a similarly pervasive system.

This paper will discuss the design philosophy behind GRAPHPAK, its basic functions, its
application-oriented functions, and applications which have sprung from these basic facilities.
It will attempt to show why this facility has demonstrated that useable, highly interactive, and
economical computer graphics is very definitely possible in todayls technical environment.

Introduction

APL/360 GRAPHPAK is an integrated collection of APL functions that was originally
informally assembled to satisfy a need - the presentation of graphic information at the terminal
ot an APL/360 user. During 1969, the authors had Searched for a means 'of presenting graphic data
that was superior to the frequently-used APL typewriter plot packages. That search was success-fully concluded with the discovery of commerically available plotter-controllers. A plotter -
controller is inserted between the IBM 2741-Data Set interface where it monitors all serial data
transmitted from a computer to the terminal. The plotter-controller's character translation and
control conventions must be compatible with those of the TSP-12** (with erase feature). Namodifications to equipment ire necessary, and the terminal may continue to be used in the
conventional manner. On receipt of a particular control character sequence, the plottercontroller inhibits further transmissions to the terminal, and it buffers and digital-to-analog
con-:erts subsequent characters into analog deflection signals for a display device. Outputdevices used include storage tube displays and standard X-Y plotters (such as Tektronix Model
611 Storage Tube Display or a Hewlett-Packard Model 70058 X-Y Plotter. GRAPHPAK provides the
programming support required to operate this equipment.

GRAPHPAK meets the objectives of a philosophy that strives to get computer graphics
capability directly into the hands of the user. It meets at least four requirements of such aphilosophy.

1- Economy At current prices, the additional equipment required can be purchased for
approximately $5000. This includes a plotter-controller, a storage tube display
device, and a camera for hard copy.

2. Availability The equipment is directly in the hands of the user - a part of the
terminal he is using more and more in his daily working habits.

3. Useability - GRAPHPAK take!) advantage of APL's conciseness and preciseness of
notation. Graphic commands are S-reasonkble marriage of natural language and function
notation. The result is that GRAPHPAK is easy to learn and easy to use.

4. Interactiveness GRAPHPAK is highly interactive, primarily because of its
availability and useability. Interestingly, the interactiveness is achieved in spite,of relatively low rerformance, primarily because the manner in which pictures are
developed maintains the interest of the user. The system is also highly interactive
in that the user can interrupt a picture at any time while it is being drawn it he
does not like what ne is seeing.

since its initial demonstration in early 1970, the facilities of GRAPHPAK have grown to
encompass a number of application areas. The author's attribute its growth to two factors:

1. APL, the language through which a user works with GRAPHPAK, makes it easy to
implement new applications.

2. The ease of use of GRAPHPAK encourages, rather than frightens, APL users to add the
graphics dimension to their work.

GRAPHPAK Facilities

GRAPHPAK consists of facilities of two types - basic graphics support and applications
support.

The basic support provides several simple, but non-trivial facilities.

1. It provides the ability to draw defined bsolute vectors in a 0-to-511 x-y coordinate
system.

2. It enables generation of stroked characrs of varying size and atientation.

3_ It allows the user to automatically erase the screen of a storage tube display.

An example of a display generated using the basic "DRAW" facility is the timing diagram
illustrated below.

Character-writing, illustrated below, is generally to be avoided, since it is exceedingly
slow.- (Drawing proceeds at a speed,of about-four line segments per second.)

s

V

Applications support is built on the basic functions, and it includes functions for curve-
plotting, curve-fitting, and descriptive geometry. Examples of each are illustrated on the

following pages.

Curve - Plotting

24

A aulti-function plot:

Darchart:

i

Descriptive Geometry

Icosahedon-based geodesic domes:

Ill

I I I

A ArAgtii,
A

25

Actual Applications

Following the demomsa.mrtan of tie original GRAPHPAK package, individuals have built on the

capabilities and have iindlememted the-ix own applications. Examples are illustrated below.

A graduate student hiis .implemented a hidden surtace removal algorithm in APL:

26

Aa elyactrical engineer
analyzed signals.

has used GRAPHPAK to contirm r per reconstruction of Fourier-

V : t

A physicist has used the plotting facilities for spectral analysis.

27

Optics specialists have used the plotting facilities in studies of kinotoras and optical
filters:

,

`'
j

I.1

,110
111

HI 1I
HI

11+11
' I it'll I 11.,11.

'I

111

,11

li

28

i

A

An engineering mechanics specialist has used the sketching facilities to conform a finite
element model:

1/4111/-
il$P41

qpi 74111

Aii1111111M.EAM=&.

29

The authors feel that the APL syntax is ideal for a conversational graphics language. This
lue to t he manner in which several APL functions may be called with one line of typini in the
x calt;niator mode. For example, if a user has an object represented as d set of data, say

he can draw d rotated, scaled, and translated perspective version of it on the screen
watzl the c mmand:

SKET .6 -.6 0 TRANSLATE 2 PERSPECTIVE 20 30 40 ROTATE SCALE OBJECT

The syntax of some of the GRAPHPAK functions is given 'here:

A!,,,cALute Xector Drawing

,Points in two-dimensional space(X-Y) are most basically addressed by specifying coordinates-
iL tate rlinge 0 to 511. The APL function xxxxxx converts coordinates in this ranye anto4;,,, string

API, characters (literal vector) which the plotter controller then converts into analog
vf-t,,ges used for driving a display or plotter.

SYNTAX: Z- DRAW DATA

WHERE:

DATA is a three-column matrix

DAT A.1. ;1] is a binary vector. A 1 means to go to the (x, y) position

indicated by columns 2 and 3 with the beam off (or the pen up).

A 0 means the same thing but with the beam on (or the pen down).

DATA [;2] is a vector of X positions.

DATAF;3ii is a vector of corresponding Y positions.

is the literal string (graphic orders) which will cause plotting when

communicated to the terminal.

If a drawing is to be produced with the beam on (or pen down) for all points, the first
column of DATA may be omitted. That is, only the X- and Y-coordinates need be included. When
the function is used in this way, it is assumed that the pen should be up as it moves to the
first point.

The function DRAW will generate output for use with a CRT display or with an X-Y plotter.
Wihen used with a CRT display, a line can be drawn from one side of the screen to the other with
four characters. The time needed for this is about .27 second, because the characters are sent
a.t the rate of 14_8 per second. However, when.. using. a plotter, intermediate points must be
inserted siuce the response time of the mechanical pen is such slower than the CRT. This is done
by compu tins! the L. " Of the increments of motion required; then, if any of the -AX or AY are
larger than a pi'.:1-e.t value (usually 50 is used) , extra points are inserted by linear
interpolation so that ail of the AX and AY are smaller than the preset value. If the pen is up,
this interpolation is not one However, after a long pen-up 'movement, the pen needs time to
"settle down"; so the X, Y position is called twice to allow for the settling. After a string of
data has been processed and the lines drawn,. a variable called kiM is set which contains the
coordinates of the last pen position. Then, when the next string of data is entered, the program
knows the pen position and can decide if interpolation is needed. All of these features are
bypassed if the output is on a CRT display. The global variable Me is set to 1 or 0,
depending on 'whether the output device is a CRT display or a plotter respectively. The
interpolation distance may be altered by changing the variable MT from its normal value of

30

It a data value is outside the 0 to 511 range, one of two operations will take place
depending on the value of the global variable CC/. If

SC/ = 0, the data is changed to the nearest value in this range.

IC/ = 1, the data is "scissored"**4 to present a non-distorted
object on the display.

Also, if a data value is an non-integer it is rounded to the nearest integer.

Character Writing

Characters are written using the function WRITE. The characters which may be written are:

ABCDEFGHIJKLMNOPQRSTUVWXYZ12345678900)40-*+.,/vAs,.,()[]\;:41"?-
11_VA0ITIcpm'cnnu=wL

SYNTAX: Z-t-P WRITE C

WHERE:

C is the character string to be drawn; P is a vector.

PC 1 2] = x-y position (in 0 -to -51 1 raster units) of the lower left corner of

the first character.

P[3] = character height. If 1, the character is six raster units high and four wide.

If PC 3 Jis a value other than 1, the size of the character is multiplied

by this number.

P[4] is omitted if the characters are to be written horizontally. If p[4]

is included its value gives the number of degrees that the line of

characters is rotated counterclockwise about the about the point PC 1 2] .

Z = output string of graphic orders.

Cur ve-Elottinq

The function LPLT tares data to be plotted and control parameters as its input and
automatically produces scaled plots as output.

SYNTAX: A LPLT B

WHERE: B is an array containing the data to be plotted. If it is a vector,

the values of the vector components are plotted against their index

(i.e., B versus z pB). If B is a matrix, the first column is

considered to be a set of abscissa values and each succeeding

column to be a set of ordinate values. Therefore, several sets of

data can be plotted against a single set of independent variable

values.

31

A

A[1]

A[2]

A[3]

A[t]

is a vector of control parameters

0 scale the data to fit within the plot frame
=

1 use the previously computed scale factors to scale the data

0 draw the axes

= 1 do not draw the axes

2 draw axes only (no plot)

0 use a linear x-axis

1 use a logarithmic x-axis

0 use a linear y-axis
=

1 use a logarithmic y-axis

{0

plot line segments between points

A[5] = 1 plot symbols on points

2 plot both lines and symbols

{0

do not label the axes

A[6] = 1 label the axes

2 label axes only (no plot)

Only the first component of A is required to be entered: it is automatically filled out
with zeros to a length of six if components are missing.

If data falls outside the range 0 to 511, whether "scissoring" will or will not be applied
is determined by the value of global variable SCI , as described earlier.

The terminal printer records zero-shift and increment values for both axes after each new
plot unless labeling has been called for

As a final example of the syntax used in GRAPHPAK, we consider the problem of fitting a
smooth curve to a set of data, say XYTEST . If we decide we would like to see how a straight
line fit would look, we enter:

FIT SL XYTEST

The systen responds by drawing a graph, of the data points and the least-squares best-fit
straight line. Then we try a third-order polynomial:

FIT 3 POLY XYTEST

The system "knows" that it has already drawn the data points and the axes so it doesn't bother
doing that again but proceeds to draw the third order polynomial. In addition to polynomial
fits, GRAPHPAK has the capability to do power, exponential, log, log-log, and spline-like fits.

Summary

It has been encouraging to watch the growth of GRAPHPAKGs acceptance. Today, it is being
used in several IBM locations, including Endicott, Fishkill, Lexington, Los Angeles,

Philadelphia, and Yorktown, and it appears that an applications base will be built in a manner

similar to the way the APL public library base as assembled..

GRAPHPAK was recently announced as an IBM Field-Deyeloped Program. We expect to find it
applied to a wider class of applications, since, through its development and use, we have become

convinced that useable, highly interactive, and economical computer graphics in the context of

API. is very definitely possible in today's technical environment.

*

FOOTNOTES

APL/ :360 GRAPHPAK, Program No. 5798 AGK-IBM Corp., Program Information Department,

Hawthorne, New York.

Time Share Peripherals Corporation, Miry Brook Road, Danbury, Connecticut 06810.

*** Scissoring is an operation that truncates _image data to produce the illusion of cutting the

image on the specified boundaries.

32

GRAPHICS IN APL
Alfred M. Bork

Physics Computer Development Project
University of California

Irvine, California

This document describes an experimental graphic facility within APL. The terminals are
Assumed to be inexpensive timeshared graphic terminals equipped with an APL character set. We
first describe functions in a grpahic workspace, and then APL primitives for graphing.

User Plotting Functions - Workspace DRAW

The following functions are available as a group called SEE in the DRAW workspace:

DRAW NOSCALE
TEK CENTER
ARDS SET
TERMINAL INT
ERASE VS
SCALE DASH
AXES

1. DRAW produces a curve on the screen and determines where the curve is to appear_

It imitates, at, least partially, the APL/360 PLOT function. PLOT produces point
plots or histograms on the typewriter. Its general fore is

20 50 PLOT X VS Y

VS is an APL function, combining the two vectors X and Y (pX = pY) into an array
suitable for use in PLOT. The numbers in front have an effect somewhat like
windowing - they determine the "size" of the plot, the number of lines and the number
of characters in each line.

N,,,N,
The corresponding graphic function is DRAW. It follows the general specification for
PLOT. DRAW only plots one curve each time, in either two or three dimensions. It

seems natural to Let the left argument of DRAW specify a "window," a section of the
,,

screen on which the picture is to appear. It can use the function VS to combine
arrays for plotting, or 1 by N, 2 by N, or 3 by N arrays can be used directly as the
right arg ent.

We need four umbers for a window, the coordinates of points A and B in inches from
the lower left caner, as in the diagram, so DRAW can be preceded by a four-vector,
literals or a variable.

If the left argument to DRAW is a scalar, the window currently in effect applies; the
value of the scalar is ignored. The initial default window is the largest square
possible touching the lower and right edges.

DRAW can have a third argument on the right for three-dimensional plotting. Thus

2 2 6 6 DRAW VX VS VY VS VZ

plots the three velocity components VX, VY, and VZ in a window as shown:

We must have pVX = pVY = pVZ. VS is extended to allow 3-D arguments to DRAW.

33

The distances for the first arugment of DRAW are measured in inches from the lower
left corner. After a DRAW, the cursor goes to the next writeable line. DRAW does not
erase the screen, so it ran be used to overplot curves.

2. SCALE, N3SCALE, aril CENTER determine the placement of the picture within the window.

SCALE determines the user coordinates for the smallest and largest value, the corners
of the current window. The general form is

SCALE A

For a 2D plot, A is a four vector; the first two components are the maximum and
minimum values of the horizontal variable, and the next 2 of the vertical variable.
For a 3D curve, pA = 6; the last two components determine the scale for the third,
Pr Z, axis.

So for a 2D graph where the minimum values are -1.5, and the maximum 3, for both
variables, we have

SCALE 1.5 3 1.5 3

The default for SCALE is to scale the data to occupy the full window, finding the
maxima and minima.

NOSCALE returns to this default case after the use of SCALE. It has no arguments.

CENTER places the origin of the coordinate system in the center of the windown, and
then scales to fit the window. It has no arguments.

SCALE, NOSCALE, and CENTER do not return a value.

3. ERASE, HOME, and SEr control utility functions on the CRT screen.

Screen control functions perform operations on the CRT, as in these examples:

ERASE - erases screen, sets cursor at upper left corner

HOME - sets cursor at upper left corner

3.5 SET 6.2 - the cursor is set to the position on the screen
shown, with measurements in inches.

3.5" -11.

6.2"

4. AXES draws axes =orresponding to the current scaling and windowing conventions. It
has no arguments, and returns no value.

5. DASH causes the next curve only to be dashed.

6. INT establishes an interval. It is often useful in plotting to establish a vector of
equally spaced values. The function for this is INT, as in this example:

A E.- INT -6 6 100

This function sets up a vector of 100 equally spaced values between -6 and 6, and
assigns it to A.

7. ARDS, TEK and TERIINAL set the type of terminal in use. On initial release the APL
Graphics facility supports three terminals: Tektronix 4002, Tektronix 4010, and ARDS

34

100. As these terminals have different graphic coding conventions, it is necessary
for APL to know which is in use in order to draw curves.

In later versions of APL Graphic software terminal specification may use a system
command- However the initial system employs the following functions to set terminal
type:

ARDS sets terminal as ARDS
TEK 4002 sets terminal as Tektronix 4002
TEK 4010 sets terminal as Tektronix 4010
TERMINAL queries the user as to which terminal he is using, and takes

appropriate action. Intended for use in graphics programs
which do not suppose a highly knowledgeable graphics user.

The default terminal if no terminal is selected is the Tektronix 4010.

8. Later Features

Eventually we will allow the user to define what graphic terminal he is using,
perhaps with a ")TERM" system command. This affects both code translation and graphic
data.

We will also allot the user to "store" a picture, the actual graphic data; this may
be done with a new data type, "graphic."

We will later allow for the possibility of graphic input, through tablet, light pen,
joystick, mouse, etc.

DRAW may also eventually be called upon to construct functions in the complex plane,
assuming that "complex" is defined as an APL data type.

Underlying APL Primitives for Graphics

1. - Quad backspace zero

This is the basic graphic output function. Its use is in the form

For ASCII terminals incapable of drawing APL characters the expri.ession "$Q0" can be
used.

The following are legal possibilities for xxA:

1.. A =

2.. A = N 2

3. A =

4. A = 1 N

5. A = N 1

6.

7.

A = 3

A = N 3

2D plotting

against indices

3D plotting

This leaves several ambiguous cases. If pA = 2 3, we interpret this as a 2D plot of
3 points. If PA = 3 2, we understand a 3D plot of 2 points. If pA is 2 1 or 3 1,

a point is plotted. If pA is 1 2, or 1 3, 2 or 3 points are plotted.

On initial implementation cases 1, 2, 6, and 7 are available.

Scaling, windowing, and the terminal currently in effect control the conversion of
the arrays to graphic form. The graphic data is set to the terminal; the first bytes
of data set the graphic mode and the last return to character mode. The screen is not
erased by this operator.

This primitive is available and known to the user; the character gB is legal.

35

If a single number is assigned to & an ASCII control charcter is sent. The
correspondence between integers and control characters is in ascending code order.
Other As give a RANK ERROR.

At a later time El will be used for input, both for interrogating the terminal (as
with the TEK 4010) and for graphic input from tablets, joysticks, mouses, etc.

2. 111) - Quad backspace S

151 Z.",A

Memory inset - Cor controlling graphic conversion. (4 transfers data entered with
SETPOINT, SCALE, AND DRAW (window data) to the code for generating graphic data we
can do this with a command of the form:

where S is a new APL primitive, A is a scalar or vector, or a variable with scalar or
vector value, and C is an integer specifying the function as follows:

C = 1 terminal type 1 = ARDS, 2 = Tek 4002, 3 = Tek 4010

C = 2 lower left window, x
lover left window, y,
upper right window, x
upper right window, y

C = scale, in x
scale, max y
scale, in y,
scale, max y
scale, in z
stale, Tax z

C = 4 setpoint -xfyvalues.

C = 5 Draw axes

pA = 4
for C = 2

pA = 4 or 6

z arguments are optional

pA = 2

C = 6 Controls scaling. If A = 1, use maximum scaling.
If A = 2, use centered coordinates with maximum scaling.
If A = 3, return to previously set window.

C = Dash next curve.

C = 8 Erase screen

Higher values of C presently give a Value Error; some of them may be used for future
extensions. For terminals without APL characters, $QS can be used.

Examples:

Changing the window

71 2 2 2 4 4

2. Scaling for coordinates, 2D plot

ED 3 3.4 7.1 4.1 6.3

Eg is a legal character, but it is expected that it would not normally be employed
directly.

The system is implemented in APL under the Universal Timesharing System for the Xerox Sigma
7. Implementation details are available in a separate document.

36

AN INTERACTIVE APL GRAPHICS SISTER

Stuart G. Greenberg and Craig I. Johnson
IBM Scientific Center
Cambridge, Massachusetts

ABSTRACT

An experimental APL graphics system operating under CP-67/CMS and communicating with an
1130/2250-IV is described. Features which make this system useful in interactive design are
emphasized. As an example of the usefulness of the graphics system, an interactive plotting
package is presented in detail.

I. Introduction

The purpose of this paper is to describe an experimental APL graphics system and to justify
portions of the system design by presenting an application of the system capabilities. The two
basic motivations for the development of an APL graphics system are the need for providing
interactive graphics for APL and the need for providing computational power for an existing
graphics system. The graphics routines and APL functions described in the paper are experimental
programs for IBM internal use only and are presented in order to air the issues raised by the
design of an interactive APL graphics system.

The major aim in the design of the APL graphics system was to achieve simplicity of use by
the "non- programmer" while, at the same time, providing enough power to implement prototype
complex graphics systems by the professional programmer. A secondary aim .was to implement the
system at a level such that the software would be adaptable to a wide range of display devices.
Simplicity is achieved by the choice of the front end language itself. The conduciveness of APL
to graphics applications is discussed in detail, in Section 3. The achievement of the second aim
is due to tile fortuitous availability of existing hardware and software.

The first fortuitous circumstance was the development of APL(CMS) [1] a single user APL
system running on a virtual machine under CP-67/CMS [2]. Effectively, each user of APLICMS) has
his own copy (and, in some cases, version) of the APL interpreter. Experimental facilities exist
which enable the APLICMS) user to execute external (to APL) object code. In particular, the user
can execute the subroutine REIGRLF. REMGRAF is an interface between System/360 programs and the
1130 graphics support for the 2250 display terminal. The 360 and 1130 communicate via
synchronous communication lines which are managed by a communications access method called
HOTLINE. While the user never calls HOTLINE directly when using REMGRAF, the programming
interface provided by REMGRAF makes available to the user routines which perform graphic
functions on the 1130. The net effect to the user is the seemingly direct call to the 1130
graphics routines.

The restrictiveness of running under CP-67 is overcome somewhat by the ease of interface
modification which follows from the modular structure of the graphics system itself. This
modularity lies primarily in tae descriptive data and command structures [(3,4] - data structure,
picture structure, and graphic "orders_" A natural taxonomy of interfaces arises from the
combinations of the potential places of residence for these structures. For example, the
System/360 communicating with a 1130/2250-IV can make use of a problem data structure residing
in the 360 while the picture structure and graphic orders reside on the 1130 (the system
actually used). his separation of interfaces allows the implementation of compatible schemes
for the use of different display terminals. For example, with a buffered 2250-1/1/I the data and
picture structures would reside in the 360 and the graphic orders in the 2250 buffer. An
unbuffered 2250 -I (in effect, a storage tube) would require all structures to be on the 360 side
and would further 7.equire the re-creation of the entire picture for each change. Thus, it is
easily seen that tile advantage of viewing graphics systems in this manner lies in its provision
of a clear one-to-one relationship between interface location and display device capability.

The description below will relate to the dynamic display device (2250-IV) actually used in
our experimental implementation. It should be pointed out that use of a different device does
not require modification of the APL functions described in the sequel, but requires modification
of the interface and communication code. The restriction on the APL functions lies in the fact
that as the display device becomes less capable only a subset, of the functions are applicable.
The system actually used is pictured below in Figure 1.

For our purposes, the System/360 side consists of a CMS virtual machine. The CMS system
code occupies the first 73728 bytes of virtual storage and is followed by the APL interpreter
and execution code occupying approximately 50K bytes. REMGRAF and HOTLINE are loaded after this

37

and the remaining area (approximately 330K bytes on a 512K byte virtual machine) is the APL

Workspace.

The APL graphics system described in this paper differs from the recently announced
GRAPHPAK [5] primarily in its capabilities in dealing with a dynamic display such as the 2250

terminal.

System/360
CMS

Virtual Machine

APL
Workspace

RE; GRAF/
HOTLINE

APL:
Interpreter

CMS

1130 2250

Light
Pen

\\\--

1- Function
Ke,rboard

0 0 0
0 0 0
0 0 0

4--

2250
Picture
Structure

Data

Graphics
Subroutines

MAKE, DELETE,
Etc.

Subroutine
Interface

Communications:
Package

Figure 1 - APL Graphics System Configuration

The remainder of the piper will be concerned with the graphics system as it is viewed by
the APL programmer. Section 2 contains a description of the basic graphics functions which are

available. The advantages of the APL graphics system in interactive design are discussed in
Section 3, and an application of the basic function- in an interactive plotting package is

presented in Section 4. Extensions are discussed in the concluding Section 5.

II. The Basic APL Graphics Functions

The APL functions listed below correspond to the graphic command capabilities of the
1130/2250-IV system described in the preceding section. The communication interface may be

completely ignored if desirei. However, there exist commands which are useful for blocking and
unblocking messages in order to improve performance. The commands fall roughly into five classes

initializatioa, entity creation and deletion, entity manipulation, transmission control, and
offline device control.

Initialization

The commands are GRAPHICS and RESET:

GRAPHICS - initializes some global variables and the 2250 at the start of a graphics
.syssion

RESET - resets the 2250 display terminal

Creation and 2eletA.om of Graphic Entities

The commands are MAKE, PTEXT, and DELETE:

38

MAKE - this command is used to display a set of coordinate pairs on the 2250. The format of
this command as an APL function call is

Y MAKE X

where X is the set of abscissa points and Y is the set of ordinate points. There are
several modes in which these points can be displayed. These modes are controlled by the
global variable PLOTMODE which defaults to the integer value 7, meaning absolute lines.
Using this particular mode results in lines connecting the specified points. Smooth curves
would normally be displayed in this fashion. The other plotmodes are listed for convenience
in Appendix A. The arrays X and Y should contain integers between 1 and 1024, these numbers
corresponding to the actual raster units on th..?. 2250 display terminal. The function MAKE
returns an integer identification number by which one may refer to the, graphic entity just
created in future operations.

PTEXT - this command is used to display character strings on the 2250. The function call is

XY PTEXT STRING

XY is the coordinates of the starting point of the character string on the 2250, and STRING
is the character string to be displayed. The display is wide enough to hold 74 characters.
If a message goes off screen it simply wraps around to the next lower line. ID has the same
meaning as in the function MAKE. Note that for both functions, MAKE and PTEXT, the normal
id generation can be overriden. If one desires to assign a given plot or character string a
specified id, then assigning this specified id to the global variable NID prior to issuing
MAKE or PTEXT will achieve this desired effect. A particular instance where this might be
useful is when one wishes to assign a group of plots and/or character strings a single id.

DELETE this command enables one to delete graphic entities which have previously been
created. The function call is

DELETE ID

ID is of course, the identifying integer of the entity to be deleted. One may delete
several entities at once, that is, the function DELETE may take a vector argument.

Granitic Entity Maniulation

The commands BLANK, UNBLANK, BRIGHTEN, UNBRIGHT, and READ are Used to modify or manipulate the
display of existing graphic entities.

BLANK - executing the command

BLANK ID

causes the named graphic entity to disappear from the 2250 terminal. The displayed image of
the entity is stored in the 1130 memory, so that the entity may be redisplayed at a later
time. ID may be a vector.

UNBLANK - this command causes blanked entities to be redisplayed. The function call is

UNBLANK ID

ID may again be a vector.

BRIGHTEN - this command causes the display of graphic entities to be brightened on the 2250
display. The function call is

BRIGHTEN ID

ID may be a vector.

39

UNBWIGHT - causes brightened entities to be restored to normal intensity. The call is

:eEEMIGHT ID

ID may be a vector

READ - causes a:message-to be read from the 1130. This message, which contains positional
and id information4 ISL,,Joitiated by light pen interaction with the 1250 terminal. The

function call

results in the assignment to the vector A entity id and light position information. Some
particular uses of this function are described in Section 4.

Transmission Control

The commands BLOCK, UNBLOCK, and ENDBLOCK control messages to be sent from APL to the 1130

BLOCK - causes all graphics commands to be blocked from transmission to the 1130. These
commands are stored in a buffer on the 360 side until a later time when the blocking is

terminated and all the messages are sent. In effect, many changes may be made to the
"picture" without these changes being reflected to the 2250. This could be considered the

so-called "delayed mode" :6].

UNBLOCK - causesAle-blocked_mode_to_te_terMinated. All messages which were buffered while
in the blocked mode are now sent. The unblocked mode is the default operating mode and

corresponds to the so-called "movie node" [6], that is, each change to the picture is
immediately reflected to give a dynamic view of the process.

ENDBLOCK - causes all messages buffered while in the blocked mode to be sent. This command
differs from the unblock command in that the blocked mode remains in effect.

Offline Revise Control

The commands PUNCH, READER, and PLOTTER control offline input/output devices

PUNCH - this command causes the image on the 2250 terminal to be punched onto cards by the
1442 punch attached to the 1130.

READER - this comman11,1causes a previously punched deck to be:: read by time; 2501 card reader
attached to the 1130. :Its2stored image, sill be displayed on the 2250 termatal..

PLOTTER this commaaal mcauses the image on the 2250 terminal to be plotted on stalcomp
plotter-attached to thia=130- This is -a means of obtaining hard copy of graphics results.

III. Usefulness for IntegNzate:Desigl

In addition to the ad simplicity use and adaptability to varioustiSplay devices as
discussed in-Zection 1, thee...MEM graphics system. escribed _in the previous section possesses

three addittonal importmmt'llawerties - :it scan. exist with:. am independent data structure, it is
serially flexible, and it -lSetttemsible. Thessproperties:make the system ideal for use in

interactive design applications.

The independent datastcucture alluded .to is that which was discussed briefly in Section 1

in reference to interface-classification. The significance of the data structure goes beyond

this, however. It represents4 Emthe programmer's terms, a structural model of what the pictures
displayed on the 2250 actually mean. This is important in simple applications and essential for

40

inter--ve picture manipulation. The functions of Section 2 make use of data which has alreadybeen converted to meaningful units for the 2250 terminal. The APL programmer has completefreedom to determine the source of his data and how it should be converted. Moreover, the APLprogrammer can build as complete or incomplete a description of the picture data as he desires.The data editing and computational capabilities of APL can be used Co modify the data structurewithout necessarily changing the picture simultaneously.

By serial flexibility of a system we mean that the system provides the capability toproceed in a step-by-step fashion with each step thoroughly verifiable and correctable. The userof the system should be able to back up to any step he has been through and proceed once againfrom that point. By saving the active workspace at appropriate tines, the user of the system maytry completely recoverable alternative approaches.

The concept of extensibility is really a feature of the APL syntax itself and constitutes ajustification for the use of APL as the front end to an interactive graphics system. With verylittle effort the APL programmer can package at any level, that is, application systems caneasily be written for the entire user spectrum up to and including non-APL users. Clearly, APIis not unique in this, but its interpretive nature and the richness of its operator structuremake the packaging an easier task. The price is paid, of course, in the relatively low executionspeei of APL, a price which could be prohibitive in interactive design processes which requireheavy, repetitive computations. One fortunate aspect of the APL graphics system is that themoderately costly command formatting and communications are not interpreted, but involve theexecution of object code. In effect, these often used procedures have been put almost at theAPL operator level.

The exemplification of these features in an interactive plotting package is contained inthe following section.

IV. Interactive Plotting Package

An interesting example of the usefulness of the APL graphics system is the development ofan interactive plotting package for. the 2250 terminal written in APL. Using APL. to write aplotting package enables one to exploit a natural language syntax which one could achieve inmost other languages only by writing a special purpose interpreter. The plotting package has thecharacteristics mentioned in the preceding section - am independent (rata base, serialflexibility, and extensibility.

Briefly, the user of the plotting package creates and deletes plotting windows, makes plotswithin these windows, moves plots from one window to another, and puts labels and axes ongraphs. In addition, some interactive capabilities are provided.

Plotting windows are created by a command of the foram:

GRAPN14-WINDOW 0 0 500 500

which will result in the display of a box with lover left-hand coordinates (0,0) and upperright-hand coordinates (500,500). The APL function WINDOW creates an integer identifier for thebox and returns this as its output value. In the example above the output of WINDOW is assignedto the variable GRAPH1. One may then use the appellation GBAPH1 to refer to this window and itscontents in the future. In addition to display and identifier-creation, execution of thefunction WINDOW results in additional entries in the data base, most importantly, the additionof a new row in the matrix which is used to keep track of the various windows and theircontents.

After one or more plotting windows have:been crette4, 'plotting may begieuby issuing, forexample, the command

PLOT1-4-PLOT ((COS PIxT) VS T ON GRA7N1

where T is a preassigned vector of values ranging from 0 to 1 in increments of 0.02. Thiscommand results in the display of a half wave of the cosine function which is automaticallyscaled to fit within the window GRAPH% The unique identifier assigned by the PLOT function isplaced in the appropriate row of the window data matrix. This value is also returned as theoutput of PLOT, and, in this case, is assigned to the variable PLOT1.

41

THE APL function PLOT is more versatile than the above example might imply, and may be used

to create multiple plots, to overlay on existing plots, and substitute for existing plots. The

command
MOT24-PLOT (FN1 T),(FN2 T), . . ,(FNX T) VS T ON GRAPHJ

results in the display of the appropriate functions on GRAPHJ. If there are already plots in
window GRAPHJ, they will be resealed and redisplayed with the new plots. The APL variable PLOT2

4(411 be a vector of iv'%egers corresponding to the new plots. The command

PLOT24-PLOT (FN11 T),(FN21 T),(FN31 T) VS T FOR PLOT2

issued after the preceding command results in the new plots being substituted for the old plots
denoted by PLOT2. Note that the plotting window need not be specified if it was the last window

referenced.

The function MOVE is related to PLOT. It causes plots onone graph to be moved to another

graph. An example of its usage is

MOVE PLOT2 TO GRAPH1

Note that usage of the functions VS, ON, FOR, and TO adds to the natural language syntax of the

command structure.

Created entities may be deleted from the display terminal as well as the data base by using

the ERASE function

ERASE MZME

where NAME is an integer constant or variaible corresponding to a window or a plot. If .a window

is designated, the entire graph is erased. Erasing a plot will not cause a rescaling of the

graph from which it has been eresed. This can be achieved by issuing

REMAKE ATAPH

where GRAPH is the name of the window in which rescaling is desired. One other command, CLEAR,

causes all of the plots in a window to be erased without erasing the window itself.

It should be obvious that 411 of the above commands matiliberal use of the basic graphics

commends MAKE and DELETE. The other content of these funatimmas- is primarily code associated

with data base manipulations.

The default coordinates for plotting Are cartesian. 7115ne mode of an existing graph called

NAME may be changed to semilog or loglog by Issuing

or

SEMITOG NAME

LOGLOG NAME

all further plotting associated with the window NAME will be in the appropriate mode. The mode

may be returned to cartesian by issuing the cartesian command.

The display mode for a plot can be modified as well. The default mode is LINEMODE, but

point plots or dashed line plots may be obtained by issuing

42

or

POINTMODE NAME

DASHMODE NAME

where NAME is a plot identifier. The plot will not immediately be changed, but the next. REMAKE,PLOT, or MOVE associated the plot will cause it to be displayed in the appropriate mode.

Polar plots may be obtained by issuing PLOT POLAR instead of PLOT in addition to the usualsyntax.

Labeled axes may be. generated for a graph by issuing the command

AXES GRAPH

where GRAPH is a window identifier. The mode of the plot (cartesian, semilog, or loglog) istaken under consideration by-the AXES function. Text labeling can be done by using the basicgraphics function PTEXT.

Limited interaction vita a light pen is provided to enrich the basic capabilities of theplotting package. All of the interactive functionsnmaolve the transmission of a simple messagefrom the 1130 to the:-360 as described in Section asunder the function READ. These transmissionsare initiated by tn.apressing of function key 10 while pointing at a graphical entity andpressing function key 10 again to terminate. The significant information contained in themessage are the entity pointed at and,the x-y position of the light pen when function key 10 istirst pressed and the: position of the light pen when function key 10 is pressed to terminate.The interactive functions which have been implemented are ENTITY, POINT, and SHIFT.

The function ENTITY READS the message sent frow the 1130 and returns as output argument theinteger identifier of the graphical entity pointed to by the light pen. An example of theusefulness of this function is the movement of a plot from one graph to another in the casewhere the identifier-of the plot has not been conveniently recorded. One may then command

MOVE ENTITY TO GRAPH2

and then point at the appropriate plot with the .light pen. Note that the command may be issuedbetora:or after the message is sent from the 1130.

The function poucr is uses to provide the coordinates of a point on a plot. The coordinatesare converted and given:in the original data units of the graph.

By using the function SHIFT one may move textual entities to any desired position. Thetextual entity is pointed to at the first pressing of function key 1'0, and the desired positionis pointed to at the second pressing.

The interactive functions described above are not meant to provide an exhaustive set ofinteractive capabilities. Indeed, much of the limitation on the interactive capabilities is dueto the limited 'structure of the message transmitted from the 1130. Eliminating the existingconstraints, however, would involve 1130 programming. This is not meant to imply that hopelesslimitations exist. As a matter of fact, the property of extensibility embodied in the plottingpackage can lead to-interesting generalizations.
For example, one might wish to obtain detail ina-. given plot, that is, display some portion of the plot. This could be achieved by using thesyntxx

DETAIL PLOT PNAME BETWEEN POINT AND POINT ON GNAME

where PNAME is the plot which.we wish to see in detail and GNAME is the window in which theexpansion is to be displayed. Zlearly, the function BETWEEN must extract from the data base thatportion of the data associated with PEASE which lies between the two points indicated with thelight pen. It is not difficult to see that this major extension of capability requires only aminor extension in code, namely, the writing of the simple functions BETWEEN and AND.

43

V. Conclusions

In order to reinforce the conclusion that. the APL graphics system is useful, let us note

some recent exploitations of the system.

Comba[7] has made an experimental implementation of his three-dimensional geometry language

using the APL graphics system and an APL model of a relational data base. Lorie[8] uses an

existing relational data base system (RAM) as an extension to APL(CMS) in addition to the APL

graphics system in order to develop an experimental prototype mapping sqstem. An interactive

design system for transportation guideway:optladzation was done as4a demonStratiom project for

the U.S. Department of Transportation by personnel of the IBM CaMbuldge Scientific center and

Federal Systems Division. Another
interestingerploitation was that done by the IMB Los Angeles

Scientific Center in the area of three dimensional sculptured surfaces. The programs were

ariginally written to display their results ati,a Computek storage tube.: 'TMe APL graphics system

was'flexible enough to allow the :conversion tan 1130/2250 configuration with two days of work

by ,one programmer.

If anything philosophical can be drawn :frawthe above described applications it is that the

APL graphics system is a very useful system= Liar which to "breadloard"' prototype graphics

applications. 11 addition, the flexibility imiefining hardware: interfaces adds a significant

dimension in that_ each prototype system .created is valid for ninny different hardware

configurations..

APPENDIX A 7--USEEML DISPLAY MODES.

The following modes of display may be obtained by appropriately

-variable PLOTMODE:

1 - incremental points

3 - .absolute points

5 - Incremental lines

6 short absolute lines

7 - absolute lines ... default

10 - absolute lines beam off for odd coordinates dashed lines.

15 - absolutely positioned large characters

26 --absolutely positioned basic.characters

BZEEWENCES

pecifyiagthe global

APL(CMS) Program Description and Operations Manual, Document 1 . SH20-1088-0, IBM

Corporation, February, 1972.

CP -67 /CMS User's Guide, Document No: GH20-'0859-1, IBM Corporation, :September, 1971..

A. Johnson, C.I., "Fundamentals of an Interactive Graphics System414 'Preprints of the Symposium

on Interactive Computer Graphics, Delft, the Netherlands, October,. 1970, pp. 43-58.

Cotton, I.W. and- Greatorex, F.S., "Data Structures and.Technigues for Remote Computer

Graphics," Proceedings of the-Fall Joint Computer Conference, 1968, pp. 533-544.

5. GRAPHPAK Interacting Graphics Package for APL/360, Document No. GB21-0411, IBM

Corporation, March, 1972.

6. Johnson, C.I., "Interactive Graphics in Data Processing: Principles of Interactive

Systems," IBM Systems Journal, Vol. 7, Nos. 3 and 4, 1968, pp. 147-173.

7. Comba, P.G., "A Language for Three-Dimensional Geometry," IBM Systems Journal, Vol. 7, Nos.

3 and 4, 1968, pp. 292-307.

8. Lorie, B.A. and Symonds, A.J., "Interactive Problem Solving Using a Relational Data-Base in

APL," Digest of the 1971 IEEE International Computer Society Conference, Boston,

Massachusetts, September, 1971, pp. 191-192.

44

MODELING A SATELLITE EXPERIMENT ON APL

Charles D. Mende
NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

This is a study of the ciarged Inarticle measurements experiment (CPME) which mnfl D-Amer.flown
oncthe IMP-H and IMP-J satellites. This experiment, although primarily intended ':two oeasmre
charged particles, contains detectors which are also sensitive to solar and galat.tit :X-7rnys.
Considerations aimed at optimizing:±the resulting X-ray data will be discussed, folliament by a
description of the technique used:At° unfold the intensities of individual X-ray staitzbm the
data. Dummy data were generated from.published X-nay star catalogs and used to -tlesoit. this
analysis technique. Of ,particular interest to APL users are the storage/ retrieval. uTt: data
packed ,.as binary words oflarbitrary.length (to save room in core) and the programming, 34,7T 1P1,
of: the, multiple lineariregression technique described by Bevington in his Data..atettuat-iztn and
Error Analysis fot the Physical Sciences.

Introduction

This paper reports a simulation study of an experiment which will be '
later this summer. As a result of this simulation, some refinements were made is A7.11m

and more refinements will be incorporated in a second version which will be flownzkeul

The experiments in question are the charged particle measurements experiments, (VORMM outhe
IMP-H and IMP-J satellites: These satellites will be placed in orbits around the, faernt with
perigees of 35 earth radii and apogees of 39 earth radii, (i.e., about half wal-tta t11:- uoon).
They will be spin Stabilized with their spin axes .perpendicular to the ecliptic plame.,. As: the
satellite -spins in this orientation, the sum, moves along the satellite equator:- MEE,Y4tblinit ot
reference on the satellite equatom will be the direction of the sun. This satellite .gpmft- ot
reference will precess about one degree per der in.a oelestial. coordinate system.

The CPME package contains. five Geiger tube detectors and a set of tivreezmistate
detectors_ These detectors are intended to provide measurements of charged pwr7r,-17-- in
interplanetary space, although the Geiger tubes are also sensitive to solar and galactx=Ta-tays.
It is this secondary use of the Geiger tubes which will be addressed further.

The .characteristics of these Geiger tubes are tabulated on Figure I. The 11..nical-the
'thin' tubes both have relatively small window areas, about 1/2.5 sq. cm., and miLL aim! :.used
primarily for solar observations.' The 'big' tube has a large window relative to the tutuatic=:amiger
tubes and will be used primarily to observe cosmic X -ray sources. Note also that -the,. -:;.eager
tubes are sensitive to progressively higher photon energies.

The configuration of the CPME package is shown on Figure 2. Of particular concemr,ate the
three Geiger tubes oriented perpendicular to the spin axis. Two other thin tubes are 14.,mzented
parallel and anti-parallel to the spin axis, and they comprise the North-South tetesce. As
they do not have enough sensitivity to observe cosmic X-ray sources, as they will not the
sun (if all goes well), they will. not be treated further. The solid state detettoms are
insensitive to X-rays, and also will be. disregarded.

Detector Selection

The first problem was to match the sensitivities and dynamic ranges o the Geiger tubes to
the expected X-Ray fluxes. Since this experiment is not a pioneering experiment, some a ::9.riori
information was known about the solar and cosmic X-ray spectra. Representative sliettma are
presented on Figure 3. Three solar spectra are given. One is'a spectrum from a solar. itlare
another is from an active region :which spawns flares, and a third is from theg4=""tzun
background. These spectra vary with time: scales of minutes, weeks, and years, respemtuely.
Cosmic X-ray spectra shown include Smappius, the strongest known X-ray star, Cetus, a va-rriwnie
source which was observed only once, Taurus (the Crab Nebula), which exploded as a supermawn
the year 1054 A.D., Virgo, also called .M-87, ane,the diffuse component, a background haze which'
is omnidirectional, here integrated over one steradian.

The expected count rates were computed by multiplying the photon spectra, at eachmkoton
energy, by the Geiger tube efficiency (i.e., the probability that a photon would cause a. count
to be registered), summing, and then multiplying by the window area to get counts registemed by
the tube rather than counts registered per square. centimeter. Unfortunately, the calculwzmin of
the Geiger tube efficienCy is complicated by its dependence on the type and thickurp,s=s of

45

NAME ---- wirDow -- GAS -- PASSE ANB APERTURE ---- CWMENTS
area thickness
sq.cm. mg/sq.cm.

thickness
mg/sq.cm.

KeV. deg.

Thin .04 0.35 Mica 0.34 Ve. 0.76-2.8 45 cone Solar; 3 tubes
(onlyvoused)

Thick .04 1.75 Mica 0.66 Ar. 1.04-C.0 45 cone Solar

Big .81 1.75 Mica 2.34 Kr. 1.46-14.5 40x11.25 Cosmic; Ip-J apert.
+9.3C Be. 40x22.5 deg.

FIGURE 1. Characteristics of IMP-H/IMP-J Geiger Tubes (particle data excluded).

SOLID STATE -
DETECTORS

Figure 2. The Charged Particle Measurements Experiment. Package.

46

- THIN TUBE
A

THI6K TUBE

5
+ I

L
I

0 G
I

4

+

P 0 T
3

+

F
I

S
L

2

+

U
I

D
X N

1
+

"
'
-
'
I

K
I

E
0

+

V .
-
1

+

C
1 1 1

S
-
2

+

E
I

C
I

S
.

T

C

D
C

D

T
C

S
A

T
D

C

D

C

V

D
S

Q
A

T
D
C

V

3
.
0

+

F
F

=

F
L
A
R
I
N
G

S
U
N

A

=

A
C
T
I
V
E

S
U
N

I
F

=

F
R
E
E
F
R
E
E

S
P
E
C
T
R
U
M
,

Q

=

Q
U
I
E
T

S
U
N

L
I

I
N
I
T
I
A
L

G
A
S
E
S
.

O
I

F

=

F
R
E
E
F
R
E
E

S
P
E
C
T
R
U
M
,

Q

A

S

=

S
C
O
R
P
I
U
S

G
2
.
5

+

F
I
N
A
L

G
A
S
E
S
.

C
=

C
E
T
U
S

F

F

B
=

B
L
A
C
K
B
O
D
Y

S
P
E
C
T
R
U
M
,

F
T

=

T
A
U
R
U
S

B
I
N
I
T
I
A
L

G
A
S
E
S
.

V

=

V
I
R
G
O

C
I

E

=

B
L
A
C
K
B
O
D
Y

S
P
E
C
T
R
U
M
,

D

=

D
I
F
F
U
S
E

C
O
M
P
.

0
I

F
I
N
A
L

G
A
S
E
S
.

U
2
.
0

+

Q
A

N
I

E
T

I
B

F
F

I

R
I

B
F

A
1
.
5

+

F
Q

A

T
f

B

E
I

F

F

F
I

B

B

F
R

I
F

A
1
.
0

+

B
F

F

F
T

I
B

R

B
F
B
F
R
F
B

I
I

B
B

O
I

F
S

I

0
.
5

+

B
E

I
E

P
D

C
S

A
F

T
I

V
T

D

Q

H
I

B
C

I
I

V
D

A
N

-
0
.
0

+

T
S
Q

F
/

I
B

D
T

I
B

V
T
C

D
H

I

Q
F

I
1

B
V

T
D

C
0
.
5

+

8
Q

A
.

D
K

1

S

C

T

F
I

V
T

I

Q
A

I

0
.
5

0
.
0

0
.
5

1
.
0

1
.
5

2
.
0

6
.
0

6
.
5

7
.
0

7
.
5

8
.
0

L
O
G
.

P
H
O
T
O
N

E
N
E
R
G
Y
,

K
E
V
.

L
O
G
.

S
P
E
C
T
R
A
L

T
E
M
P
E
R
A
T
U
R
E
S
,

D
E
G
.

K
.

F
i
g
u
r
e

3
.

S
o
l
a
r

a
n
d

C
o
s
m
i
c

X
-
R
a
y
-
S
p
e
c
t
r
a
.

F
i
g
u
r
e
:

C
o
u
n
t

R
a
t
e

R
a
t
i
o
s

V
e
r
s
u
s

S
p
e
c
t
r
a
l

T
e
m
p
e
r
a
t
u
r
e
.

90

60

D
E
G 30
R
E
E
S

L 0

A
T
I
T
U

D -30
E

-60

90

0
0-

+VIRGO
0

0

0

0

0
o
0 OE 0 00

DO

0
00

0 0 0 0 0

n

SCORPIUS 0
TAURUS

(En

-n

-o.i-o-4-04-o-,o4.0+00000-)3.4.0-Hp+o-4-0-4.0.4.04.o.4.+o-4-0.4.04.o*o.4.04,04.04-0flo-ro.4.04.0.41)-.0.4.04.04.-

GALACTIC CENTER4-00
no SUN CETUS*0 0

0 0
000
0

0 0
0 OD

0

DO
0000

-0

180 270 0

DEGREES LONGITUDE

Figure 5. Cosmic X-Ray Sources in Ecliptic Coordinates.

DIRECTION OF
VIEU

COUNTS BEGIN
COLLECTING COUNTS CEASE

COLLECTING

/

0

0
0

90 180

Figure G. Accumulation Sequence Definition.

48

material in both the Geiger tube window and the filler gds. Further, the absorption coetticients
needed vary 'logarithmically with the material type and photon energy, and also exhibit strong
discontinuities due to the atomic structure of the materials. Normally the needed efficiencies
would be calculated by ploiding through massive tables of absorption coefficients and then
grinding through needed additional calculations. Using APL, the tables were entered once, and a
short interpolation routine enabled coefficients to be calculated for any wavelength in the
region of interest. The calcuation of Geiger tube efficiencies was reduced to a few lines ot
APL. Tne calculation of expected count rates, was also reduced to one line of APL.

When computing the expected count rates, it was found that the sun would probably saturate
the thin tube. It was important not to compromise either the low energy response to solar X-rays
or the low energy response to electrons. These constraints ruled out the simple solution ot
placing a foil, such as beryllium, in front of the tube. This problem was solved by placing a
copper strip, perforated with holes over one per cent of its area, across the aperture in front
of the thin tube, and orienting this strip parallel to the equator of the satellite. Thus, the
count rate due to solar X-Rays would be decreased by a tactor of 100 while the X-ray passband

. 'still extended down to 0.75 KeY, and the aperture would, for the most part, remain clear for the
entrance of 15 KeV electrons. The' thick tube, having been flown before, did not have this
problem. The big tube, however, would saturate during solar flares but probably not during non
flaring time periods. This handicap was accepted in order to maintain the sensitivity needed to
observe cosmic X-ray sources.

Another brief exercise that resulted in a small but significant change was the following.
The ratio of the count rate of the thick tube to the count rate of the thin tube was calculated
for various spectra. For historical reasons, initially the gas fills of these two tubes were
reversed. The .resulting ratios are shown on Figure 4. It waS'faund-Ithat_theorigindlcombinaton
of gas fills produced ambiguous results. That is, the thin tube counted higher at low
temperatures dur to the thin window, but also counted high at high tImperatures due to the argon
gas fill. Reversing the gas fills resolved the problem.

The above exercises are. not elegant examples of APL coding, but prove to be extremely
tedious to do otherwise. The use of APL allowed many different combinations to be tried and the
optimum picked with very little expenditure of time.

Unfolding XzHay Star Intensities

The remainder of this paper will be devoted to the technique developed for analyzing data
from the big tube.

The X-ray sky, as viewed from IMP-H or IMP-J, is shown on Figure 5. This coordinate system
is fixed in celestial space, however, rather than on the sun. The sun will move along the
equator as time progresses. The aperture on the big tube limits the field of view to within plus
or minus 20 degrees of the ecliptic equator (note the dashed lines). This segment ot the sky
does include many strong X-ray sources, such as Scorpius and the clump ot stars at the center ot
our galaxy. One can determine which sources should be observable to the experiment and can limit
the number of sources used in further modelling of the experiment.

The manner in which counts are accumulated is illustrated on Figure 6. As the satellite
rotates, when the leading edge of the aperture, or collimator, is pointed in a given 'direction
of view,' counts begin collecting in an accumulator; when the trailing edge of tne collimator
has rotated so that it points in the direction of view, counts stop. collecting in that accumul-
ator and begin collecting in the next accumulator. On IMP-H there are 32 of these directions of
view, the first one offset from the sun by 10 degrees (i.e., the satellite rotation is divided
into 32 sectors). On IMP-J, there will be 16 sectors rather than 32.

In determining the expected count rate from X-ray stars, the aperture function used is not
simply the off-axis area relative to viewing the aperture head-on, but rather this relative
response integrated over tha rotation angle during which counts are being collected. For an
ideal aperture with a squared off 'boxcar' relative response (see Figure 7), the aperture
function is, triangular shaped with half-power points at the same angles as the aperture edges.
Due to geometric considerations, the actual relative response is a smooth quasi-Gaussian curve,
and the aperture function is a similar smooth curve.

Using. this aperture function mill the known positions and strengths of the X-ray stars,
count rates can be predicted (see Figure 8). Note that Cetus, Taurus, Scorpius, and the galactic
center can be picked out easily, although in the case of IMP-J the galactic center appears as a
lump on the side of the peak due to Scorpius. Knowing this information, one can generate dummy
data for a specified date, given the position of the sun (which is tabulated in published
ephermerides).

49

A 1.0 t MPF.:017*EEFE M
P I 0 0

E I
E * * 0 E= IDEAL RESPONSE

I? I
P n * = IDEAL FUNCTION

T
I

0 * * E R= PEAL RESPONSE
U 0.8 + P R R R 0 A= REAL FUNCTION
P I 0 E

E I
r * R R* F'

I C 0

R I
0 *R AdA P* E

E 0.6 t 0 A A r

S I
E* R A A R *0

P I
U A A P

O I

1,[ip R:-1,

N I
EA 111;i

S 0.4 t U
* At:

P

E I

PA *

I I
0 0

17 I *A 0 0 A*
U I

AR P -0 RA
N 0.2 + * n c *

C I A R P
T I

A 0

E R A
II A

I I
A E 0 A

O I
AA* R 0 0 R * A A

N 0.0 a-A-Ri-P-3-R-o-DtP-o[+----+----+----4.-----FPH-P+n-0-R-f-Ri-R-A-A
15 -10 -5 0 5 10 15

SOURCE DIRECTION RELATIVE TO 111EU-DIRECTIM-DEC.

Figure 7. Aperture Functions.

L 1.50 +
O I

H = IMP-N JJ +SCORPIUS

G I
J = IMP-J JIIJJ

I

JH J

I

J 'NJ

E 1.25 + JH J

X I

J N J

P I

N J

E I

J J

C I

H J

T 1.00 + JJ +CETUS J J

E I JJJJ H J

D I JIIIIJ J N NJ +GALACTIC
I JIIHJ Nil J CENTER

C I JRJ NJ

O 0.75 t H J J HR J

U I J II HHJ
N I J HJ J

T I J H J H J

I
N J JJJ +TAURUS J

R 0.50. + J J J J J

A IJH JJJ J H J

T IJ .. JJ H JJ JJJJJJ JJJJ J N JJ

E J 11' N N JJJ JJJ JJJJJ H JJJJJJJJJJJ

S I H H H

, 0.25 + N

I H N H N II

C I R H H n

/ I
HH H HHH RH HHHHH HRH N

S NHH HHH HHHHHH HIIHR HHHHRHH nnwinnwinvinn

0.00
0 60 120 180 240 300 360

ECLIPTIC LONGITUDE, DEG.

Figure 8. Expected Count Rates Versus Ecliptic Longitude.

50

In order to store these data compactly with the 36 Kbyte workspace, it was decided to
convert tnem into binary words 18 bits long. The routine to do this conversion used the encode
function followed by an '=1'. The rank was changed to make the data readable, although this
chan4e restricts the input data to ranks less than three. Note that the encode function actually
increases core requirements until tne '=1' operation is performed. Also note that the IBM Xm6
version of APL is inconsistent in its binary encode-decode operations For example, a 2 2 2
encode -1 results in a 1 1 1, while a 2 2 2 decode 1 1 1 results in a 7, not -1. The 'BIT' and
'BIT' routines given in the appendix use the first (leftmost) bit as a sign bit and correct for
this error.

The piece de resistance of this effort comes, however, with the unfolding of the Individual
X-ray star count rates from data in which many of the stars are smeared together. The technique
used derived from Chapter 9 of 'Data Reduction and Error Analysis for the Physical Sciences,' by
P. R. bevington, McGraw-Hill, 1969 (available in paperback)_ This technique employs a least
squares-multiple regression analysis. Unlike the domino operator used dyadically, this approach
determines, for an overdetermined set of equations, not only the coefficients but also a
background coefficient and the uncertainties associated with all ot these coefficients. Further,
it'allows the use of unequally weighted data.

The system of equations to be solved are shown on Figure 9. The Y's are measured with the
uncertainties U, and the X's are known. The X's may be anything polynomials, trigonometric
tunctions, independent variaales, etc. The coefficients A are to be determined with their
associated uncertainties.

In this application, each sector count rate is a Y(i), and its uncertainty is U(i). Because
of the low duty cycle due to limited telemetry and too few accumulators, 12 and 24 hour count
rate sums Will be used to determine the Y's. Poisson statistics apply, and the uncertainties are
simply the square roots of the Y's. The accumulated counts and their uncertainties are scaled to
a per.second basis by. dividing bythe accumulation time-(in- seconds)

The sector count rates are equal to the background count rate (due to the diffuse component
and charged particles) and the sum of the strengths of the individual X-ray stars, the A(j)'s,
weighted by the aperture functions, the X(I;j)ls. The X(1;j)'s are functions of the star
longitudes and the directions of view of the sectors. The view directions are known trom the
ecliptic longitude of the sun, and the X-ray star longitudes are known from star catalogs or may
be derived from data taken over a period of time (e.g., Figure 8, on which many star longitudes
may be found). Unless a star was observed within a sector, the corresponding X(i;j) will be
zero. Rows of zeroes may exist, and the:., can be eliminated by using the compression operator.

One then defines the correlation matrix, or correlation coefficient matrix, RJK, in terms
of the sample covariance matrix SJK, and the sample 'variance vector SJ. RJY is the linear
correlation vector between the Jth variable, X(;j), and the dependent variable Y. The effect of
having unequally weighted data is carried through by the constant 'C' and by the 1/U*2 terms.

In determining the correlation matrix RJK and the correaltion vector RJY, two obvious
problems can occur; SJ or SY may have terms which are zero, thus causing domain errors; or RJK
may be singular, which causes ..problems as it must be inverted. In the program 'SIEQ' (tor
simultaneous equations) these conditions are tested tor, the first through a 0 or-dot-equal SJ,
SY statement, and the second through the use of any handy determinant routine. If either SY or
SJ has a zero term, or if the ieterminant of RJK is less than some arbitrary value, such as 10*-
15, the program will branch to a step which pragmatically throws out one of the original
equations, and then will branch to the beginning of the program. Since we are dealing with an
overdetermined set of equations, the effect of throwing out an equation is to reduce the degrees
of freedom by one, perhaps increasing the errors slightly, and to permit the program to run
without abandoning the user to a domain error. Of course, the program also checks to ascertain
that the set of equations is still overdetermined. If the set is no longer -overdetermined, the
user is flagged and a result of iota 0 is returned. The coefficients resulting from this
analysis are given on Figure 13. The program 'SIEQ' returns these data as an "1', by 2 matrix.

The proof of the pudding, naturally, lies in the eating. Dummy data were used next in an
analysis routine which also needed, as input, a vector of the longitudes of the X-ray stars. The
unfolded data resulting from this routine should be a set of constant count rates and their
corresponding uncertainties.

For the first trial, a small set of X-ray star longitudes was used - Scorpius, Taurus,
Cetus, and the galactic center. The results are shown on Figure 11, hardly an example of smooth
untolding! Next, a source catalog of seven longitudes was used. The results are shown on Figure
12. Note the relatively straight lines. The variation in Scorpius is typewriter digitization
noise, and the variation in the Galactic center is due to the fact that the galactic center is a
clump of many X-ray sources. :learly in the first trial (four sources) too few stars were used,
and the program had to vary the fluxes tc obtain the best fit. In the second case (seven
sources), there were enough sources for the program to provide .a fairly good fit. The numerical

51

TO SOLVE FOP THE A'S IN TEE SET OF EQUATIONS:

A1i,U[1] + A[O] + (A[1]xZ[1:13) + . + (ACJI1xXC1;J3) + . + A[P]xX(1;]

Y[2],U[2] AEO-] + (Ar1]xX[2;1]) + . + (A[j]xX[2;J]) + . + A[N]xX[2:11]

YEILLICI] + ,1[0] + (44[1])<Z[I;1]) + + (ACJ]xXCI:J]) + + A[N]xXCJ:N2

(TILE U'S AS THE UNCERTAINTIES II) THE LTAEUPED Y'S, X'S APE KPO!,T)

DEFINE:

COVARIANCE MATRIX: (SJKLJ;K]*2) Cx+/(i-U*2)x(XE;J]-X[J])x(X[;K]-X[;])

COVARIANCE VECTOR: (SJY[J]*2) + Cx+/(=U*2)x(ZE;J:1-X[J])x(Y-Y)

SAMPLE VAR:flNCE: (SJ[JJ*2) (SJKCJ;J]*2)

STANDARD dEVIATrON: '3Y*2) Cx+/(4U*2)x(Y-Y)*2

CORRELATION-MATRIX:- RJECJ:K1 ISJECJ1X]*2)4SjEJT5cSJEX1-

LINEAR COPREL: VECTOR: RJY[J] + (SJY[J]*2)-:SJ[J]xSY

WHERE:

XCJ] + (+1(=U*2).)<X[;JJ)-:-+/U*2

Y + (+/(i-u*2)xY):+/U*2

C + (NtAT-1)filU*2

Figure 9. Definition of the Hultiple Linear-Regression Problem.

RESULTS:

ACJ] + (SY+SJEJ1)x(RJY+.x4)RJK+6RJ1:)[J] J + 1,2

AEO] + (++/U*2)x+/(iV*2)xY-X+.xAE1.2 P]

(UA[J]*2) + ExRJKCJ;JD.SJ[J]*2

(UA[0]*2) + Cx((N-1)410+(+11-1)x+/((gJJ*2)xRJK[J;J]i-SJEJ]*2)+

1-rif[J]xXinxRJLIJ;K]=SJ[J]xSJ[K]

CHI-SQUARED + +/(fU*2)x(Y-X+.x11[1,....11])*2

DEGREES OP FREEDOM + I-N-1

__Figure 10. Solution of the 14ultiple Linear-Regression Problem.

40 +

I SSSS SSSSSSS SSSSS SS
35 + S S SS SS SS

I SS

11

O 30 +
S = SCORPIUS
C = CETUS

E
I C = GALACTIC CENTER

D I T = TAURUS
25 + D = DIFFUSE COMPONENT

C I

o

11 I

T 20 +

A

T I

E 15 +
S I

I G Ca GC CaCa
/ 10 + C a G C C C C C C C C C C C G C C C C C C C C C C C C C

CCC CCC CCC

I

5 +

T D T T D D D T T T T T T D T D D D T T T T T T T T T D D DIDTDDTTTDDDDDDTDTTTDDDDDDDDDTTT
0 5 10 15 20 25 30

DA :I IN A UG UST 1972.

Figure 11. Unfolded Data Using Four Sources.

53

40 +
1

1

1

1E S SSSSSSS S SSSSSSSSSSS S S

35 + S S S S S S S

1

N 1

F I

O 30 + S = SCORPIUS
C = CETUS

D I

G = GALACTIC CENTER
T = TAURUS
D = DIFFUSE COMPONENT

25 +
C I

o 1

U I

1

T 20 +
1

A
T 1

E 15 +
S

/ 10 +CCCCCCCCCCCCCCCCCCCCCCCCCCCC:7C
1

G G GGGG
1G GGGGGG C GGGGG G GGGGG
I G G G

5 +
1

1ITTTTTTTTTTTTTTTTTTTTTTTTTTTTTT1DDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
0 5 10 15 20 25 30

DAY IN AUGUST, 1972.

Figure 12. 'Unfolded Data Using Seven Sources.

DATA ACCUMULATED OVER 1 INTERVAL.

SOL. LONG.
START: 129.30 130.30 131.20 132.20 133.10 134.10 135.10..

STOP: 129.30 130.30 131.20 132.20 133.10 134.10 135.10

I[ACC]: 171.40 171.40 171.40 171.40 171.40 171.40 171.40

SOURCES:
BKGND: 1.18 1.19 1.19 1.20 1.18 1.17 1.16

0,07 0.06 0.07 0.07 0.11 0.12 -0.12

SUR: 5000.0 5000.0 5000.0 5000.0 5000.0 5000.0 5000.0

61 6.1 6.1 6.1 6.1 6.1 6.1

25.7 0.'47 0.87 0.91 0.98 0.95 0.93 0.90

0.35 0.37 0.36 0.34 0.35 0.33 0.31

32.9 9.71 9.78 9.73 9.68 9.74 9.79 9.82

0.42 0.42 0.40 0.38 0,37 0.38 0.39

83.4 2.13 2.11 2.09 2.10 2.13 2.17 2.18

..i-
0.21 0.21 0.22 0.23 0.28 0.31 0.33

245.2 35.60 35.37 35.57 .35.45 35.59 35.59 35.53

0.70 0.65 0.62 0.60 0.61 0.61 0.60

258.2 2.63 3.04 2.61 2.71 2.50 2.54 2.50

1.08 0.78 0.60 0.47 0.41 0.38 0.40

266.0 6.67 6.35 6.73 6,79 6.97 7.04 7.17

0.99 0.64 0.50 0.44 0.44 0.48 0.58

273.0 4.60 4.66 4.45 4.43 4.33 4.36 4.36

0.46 0.36 0.34 0.35 0.40 0.47 0.55

.

Figure 13. Tabular Unfolded Data Using Seven Sources

54

results ate tabulated on Ripte 13. Note that the variation in the flumes due to the unfolding

algorithm is usually less than 30 per cent of the uncertainty due to the count rate statistics.

The above analysis scheme was used on dummy data from both IMP-R and IMP -J to determine the

feasibility of changing IMP-J from a 32 sector system to a 16 sector system. It was shown to be
feasible, and this change will increase the duty cycle by a factor of 4, thus increasing the

statistical precision by a factor of 2.

The utility of this study does not end with the launch of the satellites, Recently an

extended file system was added to the Goddard 181 system. This addition allows data tapes from
the experiment to be placed on a disc where they can be accessed by the APL system. with only

minor changes, these sane analysis routies will be used to uphold the satefllite data. The same

programs used to optisite potential data ptiot to launch will then be used to analyze the actual

data after launch.

ACKNOWLEDGMENTS

Dr. S., M. Krimigis and his colleagues at the Applied Physics Laboratory of the Johns

Hopkins University, are to be tnamked for inviting the author to participate on their IMP-H/IMP-J

experimenter team. Thanks are also due to It. 2. 1. Vette and L. R. lads tot their help and

encouragement and for making toe facilities available for doing this work.

4l7PE110I3, ROOMS.

7 546 30T 1

[1] A '31T' CONVERTS DATA Y (3>ppY) TPTO NIWY

[2] A WOP,PS II BITS EOM (INCLUDING 0130 BET),

[3] Ti.(Y<0),[1] 1:((7 1)n2)v1,11.5t("lt24:1)1("241-1)lY

14]
11-((l((INY)xl<0n1),(Dv11-1tp1))p,t)(N,Irx/pY)p,1'

V E+D 1l.ID 1

[1] e '212" 01CONVERTS 311101 DATA CONVERTED TO NINO
,

[2] a POr RI 'BIT'.

[3]
S*U,(-188Y),((1tpY)<0DrAE4.(((811)Y)i00),1')8,f

[4]
',:*((142)0,-((1,147,)2)82141.1)+21(1,(-1top8)p0)47,

XI SRO

[1] A '3110' DISPLAYS SIDAR1 DATA. GETEDATED M 17011 ID AD

[2] a EASILY READAELE POL.

[3] 14.((((-1fmnall)vIttl)0(141),0)11011[1+1]

0+1*4 5p111,120

'10 9 8 -7 -5

'5 -4 -3 '2 71

0 1 2 1 4

5 6 7 8 9

55

7 180 SIEQ X;X;Y;I;',';C

[1] 2410

[2] -0 IPX)ICCI

[3] "141;1 UNKNOWNS, 1.,141C EQUATIONS.'

[4] +0

[5] GO;C..(pESI)4(-1k6S3I)xkfEET+I0[;2]*2

[8] RJK+X((1t0)80) °.+72'(SCItdd)11051

[7] SY8(CxSENtd(Y[;1]I"(SS1+,xY[;1])i+1,5511*2)*

0.5

[8] -40v..SY,Sj+(CxSSItd(11JN*2)*(),5)/c11p

[9] RJY4-(Cx(ESIxY[;1]1)+,0,JEWIxSJ

[10] Pril+(CWV(Sflo,k(02[1',IlsOlvDJK).r.v6Jil):Sjo,v&I

[11] 4((1615NET RJK)ION

[12] R 'DOT' "1'8 ANY HANDY DETERIIINANT ROUTINE, SUCH AS

[13] 8 'D+DET D' (10,19112), LE,

[14] a 4wp,[1[wg11;]1.0w33[x0.1 l4[0]0,01;]0"44;)

[16] CEP:Z424.(-1*211+6X),0)4X

[16] 14.24T

[17] 'DELETE 1 FRON TEE ',(7x1D)t'NOMIcTOP,

[18] 41

[19: OK114-SYv(filn,041yElliMiSJ

[20] z4((t +/3S1)vt/DSI41[;1],K+.4),Z

[21] 24S,((i+/S,71)+Cx+/((1*2)x(4 1 1 @SJ)8 1 1 WK)tt/(P.KZ)D

11,1KaS,f4D4*,vSJ)01,.

[22] 34(2,0.542)72+5,((ei 1 1 0J)' 1 1 N2J1,)*

0,5

[23] cpipp*WSSIO[',1:Xi,v111[10]*2),((-/p7)1)

[24] /4.1+Cli414-10

7

56

044-4-4 BIT X

1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 o

1011110 0 1 1 0111101
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

0 1010110 011101110111

4 SHO X

1000 1000 1000 1001 1010

1011 1100 1101 1110 1111

0000 0001 0010 0011 0100

0101 0110 0111 0111 0111

4 BIT X

B 8 7 6
2 _

1

1 2 3 4

5 6 7 7 7

57

REPRESENTING NEGATIVE INTEGERS IN BIT VECTORS

A Short Note

L. J. Woodrum
IBM Corporation

Poughkeepsie, N. Y. 12601

To represent a positive or negative integer as a bit vector, "two's complement" arithmetic

may be used. By using a radix vector, R+2 2,(D-2)p2, if N is a positive or a negative

integer, and (1+1-2*D)AN<2*D is true, then X+RTN makes X a bit vector in two's-complement

form. Similarly, RIX is the scalar N.

58

APL AS A TEACHING TOOL: TWO VERSATILE TUTORIAL APPROACHES

Leslie N. Davis, Jak Eskinazi and Daniel J. Nacero
Syracuse University

Syracuse, New York 13210

Introduction

Computer assisted instruction has played a significant role in severall atideegraduate
courses in the Chemistry Department at Syracuse Dmiversity. Programs for drill, tntStiag1,2,3],and simulated laboratory procedures have been implemented for an introductory course for non-science majors, while programs for data analysis, tutorial, instruction[4], and rexamimaitions areused in an upper level. .cb4rse tar znemistry ealotA4. .Onr experience leads us,totielleve that
interest in and implementatilon of the .4ommnter asHo classroom tool will continue to grow hereand elsewhere, and FITOT-PUYW »Ming '!nA a tutorial. approach will contribute significantly to thisgrowth..

By "tutorial" we mean that the program gives the computer the capability to adjust to each
student's needs on an individual basis not only with respect to the depth and speed JP qt coverageof the material presented, but also for the analysis of specific student errors *Oen they occur,be they mechanical in nature (i.e_, dividing by 10 instead of 104 or cont:eptual.
to__work_TH Troblems before unaerstan4ing logarithvar. 13ezause-or theemtra&rdimarwrsatilityof the An language, there are as many, Vials to,Apptatntutorial program. design there areteaching perSonalities. This Tv*ev ,:'i)eewribes rivoawroackeS that Are haVe takem6 46,k4n of theirsignificance is their won-limitiugopen-eoded design which suggests applications outmodethe--field of chemistry or even science.

Our APL programs are accessed on the University's IBM 370/155 computer via more than onehundred IBM 2741 terminals located all over the campus, including five in the chemistrybuilding.

Program Design

The basic deciStOn in the development of any APL-CAI program is the kind of response the
student is expected to input to the computer. The programs we have chosen to discuss, whilefundamentally similar in their tutorial design philosophy, are distinct in their methods ofinputting student responses.

The pH-lOgarithm program deals with subject matter and student responses exclusively
numerical in nature. This type of material allows an essentially infinite number of problems tobe randomly generated by tme computer. It is noteworthy that the actual student input is
accepted by this program as APL literal, not numeric data, because the analysis of significantfigures, juxtaposed digits, etc., is possible only on literal input.

The programs in chemical instrumentation require sentences or phrases for Post responses.
In order to fulfill this requirement and the additional one that data outputting for theseprograms be mutually compatible, the multiple choice format is utilized for student responses.This also provided needed flexibility in individual program design and allowed much largerquestion libraries for the available workspace size than would have been possible using otherinput systems.

Self-Teaching pH and Logarithms

When introducing undergraduates, particularly at the freshman level, to the concept of pHit is often found necessary to reinforce and improve their background in logarithms. Moststudents at this level will not otherwise be able to use logarithms efficiently for simple
conversions between pH and hydrogen ion concentration. To save valuable classroom tin q and beable to bring all students up to the same level of proficiency at their own pace, we decOed to
develop an interactive Aln. program.

Although student responses are numerical, input is accepted as a character string. This
allows an incorrect answer to be literally dissected in order to give a clue as to where the
error, lies. Even when a control word is entered a check is made to see if it is a valid word, if
the proper number of characters have been entered, if two characters have been tratAposed, or ifincorrect characters (up to two) have been entered.

The CAI program is divides into sixteen units (Table I). The computer adjusts itself to the
student's rate of progress by requiring two successive correct answers before moving, on to the
next unit. Within a given unit the basic format of the question is the same; however, sinCe each

59

TABLE I

TOPICS COVERED IN pH AND LOGARITHMS PROGRAM

UNIT DESCRIPTION

A Rview of exponents

B Logarithms to different bases

C Log of powers of ten.

How to use tables to find logs

E Antilogs of simple numbers

F Using logs in multiplication and division

G Log of numbers greater than ten

H Antilogs of positive numbers

I Log of numbers smaller than one

J Antilogs of negative numbers

K Using logs in multiplication

L Using logs in division

NI Finding powers with logs

Taking roots with logs

0 A chemical application, finding pH

Finding [H+] from pH

Q Interpolations in finding logarithms

Interpolations and antilogs

TABLE II

CONTROL WORDS FOR LOG PROGRAM

WORD DESCRIPTION

CALCULATION Allows use of computer as desk calculatbr.

EXAMPLES

INFORMATION

Gives answer to present question and one
example on the current material.

Depending on question, either solves a similar
problem in step-by-step detail or gives a hint
on how to solve it.

COMMENT Allows student to ender comments at any time on
any aspect of the p ogram.

SKIP, X

.REVIEW, X

REPEAT

CONTINUE

STOP

Skips ahead to un t designated by X and puts
control in hands of student (i.e., answers are
not evaluated by computer) until control word
'CONTINUE' is entered.

Reviews unit designated by X. Otherwise same
as 'SKIP'.

Causes repetition of previous question until
'SKIP', 'REVIEW', or 'CONTINUE' command is used.

Skips to next consecutive unit with computer
taking control of the program.

Stops program, gives sign-off information.

61

number in an example is randomly generated, each question is different regardless of how many
times it is repeated_

At the start of each unit d typical problem from%the unit is solved for the student without
goinj into much detail. Then a different problem of similar difficulty is presented to the
student for him to solve. A student who is using tne program as a review exercise should be able
to solve the problem and move on without further delay. However, a student who has no idea now

to negin to answer the question will require further help_ He can get help by entering the word
INFORMATION as a response to the question- This control word directs the computer to solve a

problem of similar difficulty in step-by-step detail. Since each number is randomly generated,
LNFORMATION can be requested as many times as the student deslres. After the execution of

INFORMATION the computer restates the original problem and awaits the student's response.

The student has nine control words at his disposal (Table II). SKIP enables him to skip
material he feels competent with and allows lore time for new material. If he feels the need for
more detail in a given segment, REVIEW allows him to back track to another unit. STOP suspends
the program and gives sign -oft information. At the next sign-in the program resumes exactly
where it left off when the word STOP was entered. The other control words are explained in TanLe
I I.

The primary aim of this program is to introduce the student to the concept of pH and
ueveLop sufficient skill with logarithms for satisfactory pH manipulations. The following
typical student-computer interaction illustrates the method.

First, the subject is presented and an example is given:

0) THE CONCEPT OF PH

IF THE HYDROGEN ION CONCENTRATION ([H +]) IS 4.63E5 MOLES/LITER,

THE PH OF THE SOLUTION IS 4.3344.

Then a question is asked for the student to.solve:

0) GIVEN THAT THE HYDROGEN ION CONCENTRATION IS 3.24E-4

THE PH OF THE SOLUTION IS

after typing the lines and backspacing to the first underline, the computer waits for the
student entry.* be has the option of entering his answer or a control word. Suppose tie enters
INFORMATION. The computer responds:

THE CONCEPT OP PH

WHEN THE CONCENTRATION OF HYDROGEN ION IN SOLUTION IS EXPRESSED

AS GRAM-IONIC WEIGHTS PER LITER, THE PH (LOWER CASE P, UPPERCASE-H)

OF THE SOLUTION IS DEFINED AS THE NEGATIVE LOGARITHM OF THIS

CONCENTRATION.

FOR EXAMPLE, WATER AT 25 DEGREES CENTIGRADE HAS A HYDROGEN

ION CONCENTRATION [H+] OF 1E7 AND OF HYDROXIDE ION [0H] OF :E7

MOLES/LITER. THUS THE PH OF WATER IS 7 AT 25' DEGREES.

TO SUMMARIZE, TO FIND THE PH TAKE THE LOG OF THE HYDROGEN ION

CONCENTRATION AND CHANGE ITS SIGN.

IF YOU DO NOT KNOW HOW TO FIND THE LOG OF NUMBERS SMALLER

THAN ONE, REVIEW UNIT I.

*The quad-quote input-output used in this program is unique to the SU Computing System, but
could be incorporated into any APL system.

62

.ow the question asked above is repeated. A student who wished to review Unit I would enter
REVIEW, L. Let us assume the student responds with an answer, 3.8495, instead of the correct
answer 3-4895 (i,e,, second ani third digits transposed). The computer responds as follows:

JOHN, TWO OF YOUR NUMBERS ARE WRONG.

THE PH OF THE SOLUTION IS 3.??95

The guestion is now restated. If the correct answer is entered, the computer responds:

VERY GOOD! GIVEN THAT THE HY300E.N TO!: CONCENTRATION IS 3.-?4E4

THE PH CF THE SOLUTION IS 3.4695

The student is given credit fr the answer.and further reinforced by seeiny the correct answer
printed out once more. At this time, depending on the circumstances preceding the question, the
computer will either ask another question in the unit or move to the next unit.

In view of the fact that this program is designed to instruct and drill students, not test
their knowledge of the material, we did not see the need to gather data on their proyress. If
needed, however, all data pertinent to the use of the program can be coded and.stored for later
retrieval without altering the performance of the system in any way. It is also possible to
disable the control words and to transform the program into a type of examination which will ask
sixteen questions (one from each unit) and record student answers as either right or wrong. This
would require minimal editing of the subprograms. The flexibility of the program is further
reflected in the tact that questions may be added or deleted at any time providing the same
skeletal framework of the program is maintained.

CAI Topics in Chemical Instrumentation

The interactive programs used in our upper level course in chemical instrumentation allow
the student to learn, self-test, and review several specialized topics at a rate of progress
adjusted to the student's responses. In programming a given topic, the subject matter is divided
into four to six groups of questions which are further subdivided into three of four subgroups
of related questions. The method of question presentation is similar to that described by
Castleberry and Lagowski[5]. Tle student is first presented with a question from Group I,
Subgroup 1. If he answers it correctly the program chooses the next question randomly from Group
I, Subgroup 2, then from Subgroup 3, and then from Group II, Subgroup 1, etc. Student mistakes
result in hints which may help lead him to the correct answer. The hints try to offer a brief
discussion to clarify the student's thinking. A mistake followed by a correct answer causes the
next question to be selected from the same subgroup in which the mistake was made to make sure 's""'

the concept under consideration is well understood and to check that the answer was not guessed
at. A typical terminal printout from the ELECTRONICS program follows, including both student
entries and computer responses:

1 VOLT PP .--/\/\/\---I---
SQUAREWAVE Z1

Z2

WHEN E(IN) IS IN THE POSITIVE HALF OF THE CYCLE, THE VOLTAGE AT S
IS A. > E(IN) B. > E(OUT) C. < E(OUT) D. E(OUT) E(IN)

C

SINCE E(IN) IS i-, E(OUT) MUST BE -. WHERE DOES THAT LEAVE S?

CORRECT! E(IN) AND E(OUT) ARE OF OPPOSITE POLARITY. IF E(OUT)
IS IT IS AT A POTENTIAL LOWER. THAN GROUND.

63

WHEN E(IN) IS IN THE POSITIVE HALF OF THE CYCLE, THE POTENTIAL ACROSS
Z2 IS A. <0 B. 0 C. >0 D. ALWAYS = E(IN)

A

RIGHT YOU ARE, JOHN! SINCE E(OUT) IS NEGATIVE, POTENTIAL ACROSS
Z2 < 0.

YOU ARE DOING WELL, JOHN! KEEP IT UP!

The progress of the student is monitored continuously and the computer will end the session
if the student is scoring less than 80% correct answers, subject to certain other conditions. If
a student is 'signed-off by the computer he is advised where his weaknesses are and is invited to
try again after further study And consultation with his instructor.

The d-ata generated by the students as they use the programs is coded and sioied in une
literal and two numeric vectors which are automatically extended each time a program is used in
a given workspace. Data from student workspaces is copied periodically by the instructor into a
central data managing workspace where output programs store it :end /or print it out in tabular
form. Data from any of the programs can be stored and accessed intermixed in any order.'

Upon successful completion of an entire program, the computer prints out a special
certificate (Figure 1) which attests to the student's having' achieved a certain level of
competence ia that particular subject area Few students as about a numerical "grade" once they
have finished a program. Since they are >naware of the exact criteria on which they are getting
through they tend to pay more'attenton to the content of the programs and less on keeping track
of tne numbefr,: of right and wrong answers.

Since the programs are skeletally identical irrespective of subject matter, editing
individual questions is a simple affair, requiring minimal APL experience.

Table III lists the program titles used in the instrumentation course and the topics
covered.

Student reactions to these programs have been very favorable. Most of our upper level
students are far more anxious to try CAI than the typical freshman. Once they realize they are
not being graded by the computer they settle down to the challenge of getting it to print out
their certificate as soon as passible. The programs have provision for students to enter
comments about them; about 30A of the students take advantage of this opportunity, the majority
3f these expressing positive attitudes such as, "I found it very interesting and most important
of all, it is a good way of learning", and "I wish we had things like this in freshman and
--Thorganic chemistry", and, "It was fun." Occasionally a student will mention how or why a
particular question confused him and this has led to periodic revision of the question
libraries.

/

'

Students who have used the CAI programs have done better on midterm and final written
examinations than students who were not exposed to the-programs. The written examinations given
are generally of the problem-solving type and never repeat questions in the computer libraries.
Castleberry and Lagowski[5j have encountered a similar effect of CAI on exam grades in a
freshman chemistry course.

Conclusions

Tutorial teacbing programs can play an important part in chemistry courses on any level.
Regardless of the nature of taa material or the type of desired student response, it is usually
possible to design tutorial programs which are both interesting and useful to the students. Our
experience has been that these programs free the instructor to do more individualized teaching,
assure a measured minimum level of competence on the part of the students, and most important,
allow this competence to be achieved at a rate determined mainly by the students' interests and
abilities. It is our intention to continue to expand the scope of the courses we are involved in
with additional CAI materials.

64

6/19/72

TO WHOM IT MAY CONCERN:
'PiEASE BE ADVISED THAT ON THIS DATE,

BILL BROWN
+.4-4-1-÷-*++-*+++-*-**-* 1-4-4- 4-4-4-

HAVING LABORIOUSLY DEVOTED MUCH TIME AND ENERGY TO THE

FASCINATING STUDY OF

GAS CHROMATOGRAP.H Y
HAS SUCCESSFULLY AND HONOURABLY COMPLETED A COMPUTER

ASSISTED PROGRAM THEREIN IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS IN THE COURSE OF STUDY IN

CHEMICAL INSTWEEXATION
WHEREBY, WE HEREON AFFIX OUR SIGNATURES IN TESTIMONY AND

WITNESS TO THIS OUTSTANDING EVENT.

o 6.1"1ift(11°
o o IBM 370-155\APL,

o 0 PROFESSOR OF CAI
0SYR.UNIV..

0
o 0

0
* *

*** ***
**** ****

***** *w***
****** ******
******* ****4**

******** ********

Figure 1

65

TABLE III

CAI TESTRUY,ENTA?lON PROCRAS

ProF:;ram Description

ELECTRONICS

GAS CHROMATOGRAPHY

SPECTROSCOPY

Series and parallel netwr)rPs, properties of

VTVilys and oscilloscopes, passive networks,

feedback, operational amplifier properties,

simple operational amplifier circuits.

Separation theory thermal conductivity

detector theory and circuitry, Specific.

operation of the Carle instrument used

in the course.

Basic theory of UV, visible and IR spectro-

scopy and instrumentation, and the use of

instruments available in the course: Bausch

and Lomb Spectronic 20, Beckman DB, and

Perlin-Elmer 237B.

BIBLIOGRAPHY

1. Coffey, C. E. and Macero, D. J., "Computer Assisted Instruction in an Introductory
Chemistry Course", paper given at the Finger Lakes Regional Computing Organization (FLARCO)
at Eisenhower College, Seneca Falls, New York, April 24, 1971.

2. Coffey, C. E. and Macero, D. J., "Computer Assisted Instruction in Chemistry", talk given
at IBM Filed Systems center, Syracuse, New York, October 20, 1971.

3. Eskindzi, J. and Macero, D. J., "An Interactive Program for Teaching pH", J. Chem. Educ.,
in press (1972).

Davis, L. N. and Macero, D. J., "Computer Assisted Instruction in a Chemical
Instrumentation Course", J. Chem. Educ., in press (1972).

Castleberry, S. and Lagowski, J. J., J. Chem. Educ., 47, 91 (1970).

66

TUE .2-1-31,T1TI3S JF AN INTERA::TIVE CIL:MISTRY LABOdA7OHY PROGRAM

Tn.Joas R. Lehner and Bruce E. Norcross
State Universty pf New YOCK at Binghamton

Dinjhamton,, New York 139Q1

Introduction

During . the pasL several years a program has been developed it SUNY-Binghamton for the
introductory Chemistry laboratory which allows the student to test his laboratory results In a
particular experiment against those results expected for his sample. This test is performed,.
durinj the regularly schedulel laboratory period, by the student, at a terminal located
adjacent to the laboratory, and permits a rapid decision to be made by the student as to_whther
or not he snould repeat the experiment in order to obtain worthwhile data. This operation is
accomplished by way of the APL program CHEMLAH1, which pertarms the appropriate c.a.,1:CoIations an
the 3tudent's raw data At the time the repeat-no repeat decision is made, the s,t-dient does not
have, or get, the results of the detailed calculations made by the computer. Should a repeat be
necessary, the student has enough time to perform a duplicate experiment/On his relatively
simple dpparatus before the end of the lab period. Should no repeat be necessary, as is the case
50-7jk of the time, the student can dismantle his apparatus and proceed with the calculations at
his leisure, assured that the data is capable of providing a reasonable/answer.

After -the--- -student has understood- th'e -concepts' of the experiment, and partormed the
appropriate calculations, he may enter his calculated data at the,:. terminal, and receive a
tanular output which tells him how well he did on the calculationS dad in the experiment. These
interactions of the student and the program are shown in Figures/1 and 2. This output is turned
in with the student lab report, and serves as d basis for Student comments on the relative
success or failure ot his expe:imental work and calculations.

The development of the program, and its use and reception by students, teaching assistants,
and taculty have been described before in a general, user-oriented, non-technical, approach (11.
During the evolution of the program, a number of APLrocjramming features were developed to
accommodate the particular types of student interaction desired or observed. 'It is the purpose
of this paper to discuss in detail some of these features, and how they accomplish the desired
ends.

Sone Programming Features

We have tried two kinds of student name entry for CHEMLAB. In the more general program, a
stadant enters his name on request, and'it is then stored, exactly as written, for future use.
In the second version, a name table is filed i:hitially with names ot students in a particular
Laboratory section. These students must then enter that worKspace for their. computer experience.
Both versions are in use, and have partidular advantages for difterent.purposes. The tirst
method makes the program generally available to anyone. The second version is more efficient for
large class production use.

Two kinds of data entry a're available for this program. Originally a step-by-step method
was used in which each separate item was called for individually. Such entry required a
question- answer sequence for each datilm; each sequence requiring an irreducible amount ot
transmission-respo4se'time. Since it was important to reduce the-time-at-the terminal for ..each_
student during the first entry into the program, which occurs during a laboratory period, an
attempt to cut the number of separatentries per student was explored.

The approach used was to havethe students enter the primary data in vector form. A clear
difference in time required fp: theinitial session was found only when the students prepared
for the vector entry by organliing their raw data in the order desired before signing on the
terminal. This aspect can be arsafnl in encouraging students to set up A proper data table in
their lab notebooks. Otherwise, the directed nature of the step-by-step entry was more.
efficient. Under ordinary ciccOstances, a student should be at the terminal for less than tive
minutes for each part of CHE1tAB. Two terminals available for the last hour of a three-hour lab
accommodate one section of 24'students without excessive delays. Two terminals available for the
last two hours_of such_a:thrae-hour laboratory period accommodate most ot the students in two

.

24-studeht.tabbratory sections.

67

Error Messages designed to correct faulty entry seem to stimulate some programmers to
excesses...of cuteness or sarcasm. While a light touch with prose--responses is often stimulating
and .e=ncouraging to the students, it is easy to misjudge the appropriateness of a response from
consideration of only one situation. For instance, an earl) -draft error.message received Gy one
who entered d quantity requested to be in liters with a five-digit.nupber (obviouslyMilliliters
instead) was faced with the message:

I SAID LITERS, DUMMY. TRY AGAIN.

this message might be. an appropriate rap on the-'knuckles for the brignt but careless student who
was secure in his understanding of the experiment and the calculation involved. It most
decidedly was not a proper response for the ordinIry intrductory student becoming aciusinted
with the computer for the firs: time. That part of the program now is:

[152] RETURN+RETURN,(126)+1

[153] '161 MOLAR VOLUME OF OXYGEN (IN LITERS)'

[154] +((TEM7010)A((TEMP+050))/AROUND4

[155] 'MOLAR VOLUME IN LITERS, PLEASE!

[156] +RETURN[pRETURN]

[157] AROUND4:DATAII,SWITCY,141-TEMP

It can ba seen that if the test in step 154 is not met successfully, a more appropriate message
is given (step 155), and the program returns to the question (step 153) for a repeat.

It is important to place checks for decimal points or proper dimensions in a program which
involves numerical input, with responses which will permit a student to find an acceptable
answer before bouncing him from the program, with or without an error signal. For instance, an
early version of the CHEMLAB program had the following sequence:

[62] '141 TEMPERATURE OF THE OXYGEN [CENTIGRADE]:'

[63] DATA[I;SWITCH;5]+LTEMP4-0

[64] +(0:>TEMP-DATACI;SWITCH;5])/AROUND

[65] DATACI;SWITCH;51+DATA[I;SWITC11;5]+1

[66] AROUND:(126)+FUDGY

[67] RETURN+RETURN,(126)+1

[68] '151 BAROMETRIC READING; UNCORRECTED AT'; DATA[I;SWiTCH;5]; 10CENTIGRADE'

In step 62, the student is requested to respond to a question concerning gas temperature.
His numerical answer, indicated by the open box at the extreme right-hand end of step 63, is
stored in a location called TEMP. This value is shorn of any fractional part (by the APL
operator /XXX) and the resaltin4 integer is stored in a data array location named
DArN:I;SWIrCH;51. Step 64 checks to see if the difference between rump (which is an integer)
and OArA[I;SWIrCH:5] is less taan 0.5. rf so, the rounded value is properly stored, and the
program is branched to, that step labelled AROUND (step 66), which in turn sends the program to
step b8 - a new question. However, if the value found in step 64 is not less than 0.5, the
program does not branch to AROUND, but falls tnrou4h-to step 65, which increases the value
stored in bliTA:I;SWIrCH;5) by 1. These four steps in effect round off the temperature values
entered to the nearest degree (later versions of thiS program perform this operation more
efficiently). this temperature value, stored in DATA[I ;SW/TCH;5],- will be used later as an index
to pick out a vapor pressure correction from a table storey in the workspace. This value of the
vapor pressure of water at the temperature of the experiment is then used in a calculation of a
computer-derived result whica is used as the basis for comparison with the student-calculated
result.

68

fhe programming problem and solution outlined above igh6res two alternative possible
student responses: the temperature measured may fall outside either extreme of the temperaturetable, or, the student may make a typing or understanding error in entering the datum so that
the. number entered is not a temperature value at all. Since this is the kind of error such a
program should recognize, a checking sub-routine)15.s been introduced:

[52] RETUR114-RETURN , (126)+1,,

[53] '141 TEMPERATURE OF THE OXYGEN [CENTIGRADE]:'

[54] -)-((TEMD16)A((TE1104-0)33))/AROUND

,155] 'DATA OUTSIDE' RANGE OF TEMPERATURE CORRECTION TABLE.; 165T533 °C'

1563 -4-RETURN[pRETURN]

[7] AROUND:DATACI;SWITCH;51F-TEMP

[5+] -4-(126)+PUDGY

[59]' RETURN÷RETUR,(126)+1

[60) '151 BAROMETRIC READING; UNCORRECTED AT ROOM TEMPERATURE.'

In this sequence, step 53 asks for the observed temperature. Step 54 tests the entered
value, ,stored in TEMP, to sea if it falls within the range of 16-33 degrees C. If this
reguicement is met, the program branches to the next "AROUND", which is step 57, and the value
of TEMP is stored in position DATA[I;SWITCH;5).

Should this requirement not be met, the program proceeds to the next line, which is an
error message:

DATA OUTSIDE RANGE OF TEMPERATURE CORRECTION TABLE; 165T533 °C

After this printout, the next- step, 56, returns the program to step 52, which begins the
question- and - answer sequence ajain. Checks of this type have been introduced at many points inthe program.

Another major feature of tnis program is the inclusion of a routine which permits a student
to examine his,input data, ideitify a mistake, and correct it without having to reenter all
data. An example of the steps which accomplish this are found in lines 72-82 of the CHEKLA8
program, Figures 3 and 4.-Since this question -retry routine is one of the more opaque segments3f this program, a detailed analysis of the steps follows (some earlier steps are included in
the analysis, since they set ildicatorsInecessary for the branching-routines):

Line 37: This line is the beginning of Part 1.

Line 39: FUDGY is an index to control branching. It is initially get to 1 so that the
operation - *(126)+FUDGY will yield a branch to the succeeding line. Later on, FUDGY
will receive values which will cause branching to predetermined locations within the
function.

Line 40: .RETURN is a, vector composed of the statement numbers associated with data input
statements. It is constructed by catenating together the statement numbers of these
lines as the student makes his first pass through the input statements. Should the
student require an 1pdating of information already entered, a branch can be made bacK
to the appropriate line by way of these statement numbers. A statement of thit kind
is used before every data entry.

Line 43: Line 43 is a variable branch statement. When FUDGY has a value of 1, the branch
is to the following line. When FUDGY has some other value (calculated in line 81),
the branch is to that statement specified by 126 (the. statement being executed)
plus the value of FJDGY. This statement appears after each data entry.

Line 77: RETURN_ is the vector_ of- statement numb -ers-;-its last element is the statement
number associated with the beginning of the Question Retry Area. GOTO is a vector
composed of the statement numbers associated with only those areas the student wishes
to retry. G3TO's last element is the same as RETURN's last element.

Line 78: ;ATE is a matrix composed of question entry points matched with corresponding exit
points. Example: Lila 66 is the entry point for Juestion 3, and Line 68 is its exit
point,

69

STUDENT
SETS UP. APPARATUS, WEIGHS
UNKNOWN SAMPLE, MEASURES
TEMP. AND PRESS.,CONDUCTS

EXPERIMENT, OBTAINS PRODUCTS'

WEIGHT AND VOLUME.

[ENTERS PRIMARY DATA

1

(REPEATS EXPERIMENT) OR
PROCEEDS WITH CALCULATIONS
OF MOLAR VOLUME.

C_QM_PUTET

CALCULATES EXPECTED GAS
VOLUME FOR STUDENT'S
EXPERIMENTAL CONDITIONS,
AND COMPARES IT WITH
PRIMARY RESULTS, AND BRANCHES
TO APPROPIATE MESSAGE_

O.U_LE_'0"

OK, PROCEED

OR

HAS ERROR,BUT OK
OR

REPEAT

ENTERS RESULTS OF CALCULATIONS

(FOLLOW SAME PROCEDURE FOR)
PERCENT COMPOSITION

CALCULATES THEORETICAL

RESULTS FROM KNOWN SAMPLE
COMPOSITION; CALCULATES
RESULTS FROM STUDENT.
PRIMARY DATA;AND TABULATES
STUDENT INPUTS

PRINTS OUT
AND COMPARES

THREE DATA SETS;

WITH APPROPRIATE
ERROR MESSAGES

EVALUATES RESULTS, INCLUDING

ERRORS, AND SUBMITS WRITTEN REPORT.

Figure 1. Student

WEIGHT OF OXYGEN.
ABSOLUTE TEMPERATURE.
CORRECTED BAROMETRIC..

READING.
PRESSURE DUE TO OXYGEN.
VOLUME OF 02 AT STP.
MOLAR VOLUME OF 02.

YOUR
DATA.

ALL STUDENT PRIMARY DATA IS
STORED FOR SUBSEQUENT RETRIEVAL
AND ANALYSIS BY EXECUTION OF
AUXILLIARY PROGRAM-1.AB INSTRUCT'

Interaction with MENLAB1

0.3186*
297.0

739.3
716.9
219*
22.2

MACHINE COMPUTED
USING YOUR DATA.

MACHINE COMPUTED
I-- THEORETICAL
I VALUES.
4.

0.3186 0.3437
297.2 297.2

739.1 739.1
716.7 716.7
217 241
21.8 22.4

COMPARISON OF TH&. COLUMS ALLOWS YOU TO CHECK BOTH YOUR CALCULATIONS
AND THE AGREEMENT BETWEEN YOUR EXPERIMENTAL DATA AND THE THEORETICAL
VALUES FOR YOUR SAMPLE.

ERROR AiESSAGE INTERPRETATION:
* 5 10 PERCENT' ERROR

** 10 - 20 PERCENT ERROR
*** 20 - 40 PERCENT ERROR

>40 PERCENT ERROR

PLEASE HAND IN THIS TABLE WITH YOUR FINAL LAB
REPORT. IF YOUR SAMPLE IS AN 11111:NOW11, YOU MAY PROCEED
TO PART 3, WHEN READY, BY TYPING CHEMLAD1 AGAIN.

Figure 2. CHEMLAIB1 Output, Part II

70

[28] SWITCH4-0
[29] +(DATA[VA;SWITCH;1]14)/DRA:CULA
[30] ' SAMPLE DESIGNATION !`--4.1:E_E.URE ECL03, TYPE PURE)'
!31] PATA[VA;SW/TC11;1].-NULTAPt[
L32] DRACULA:4-((t4)cDATA[I-.-VA;SWITCH;15])/FAP,FURTHER,FIEALE,FAREST
[33] FAREST:' MY RECORDS INDICATE YOU HAVE ALREADY ENTERED VALID INFORMATION FOR

THE SAMPLE'
L34] ' TYPE AND TRIAL CHOSEN. THIS INECRMATION CANNOT SE ALTERED. IF TSERE IS A VAL

ID REASON TO CHANGE'
L351 ' TEIS DATA, INDICATE IT IN YOUR LAECT?ATORY REPORT.'
L36] +0
L37] FAR:' PART 1: ENTER TilE FOLtOWIEG PIECES OF DATA:'
[38] '"
L39] FUDGY-PTi?1-1
140j REving4 -.(T96)+1

L41] '111 WEIGHT OF TUBE AND CONTENTS BEFORE HEATING:'
L42] DATALI;SWITCH;23+U
[43] +(126)+FUDGY
[44] RETURN+RETURN,(126)+1
[45] '121 WEIGHT OF TUBE AND RESIDUE AFTER HEATING.'
L46] DATA[I;SWITCH;3] 1-U
[47] +(126)+FUDGY
[48]' 1 ?ETURNI-RETURE,(126)+1
[49] '131 WEIGHT OF EMPTY TUBE.
L50] DAT/ICI:SWITCH:41+D
[51] -*(126)+PUDGY
[52] RETURN4-RETURN,(126)+1
[53] '141 TEMPERATURE OF THE OXYGEN [CEETIGRADE]:'
[54] + ((TEMP ?- 16) A ((TF,lil' +() s 33)) /ARO (MD

[55] ' DATA OUTSIDE RANGE OF TEMPERATURE CORRECTION TABLE; 1615Tf33.0C'
[56] +RETURR[pieUUR]
[57] AROUND:DATA [;SWITCH; 5]-4-TEMP
[58] 4-(126)+FUDGY
[59] RETURNt1?RTURN,(126)+1
[60] '151 BAROMETRIC READING; UNCORRECTED AT ROOM TEMPERATURE.'
[61] ((TEMPk710)A((TEMP4-0)5769))/AROUND2
[62] ' DATA OUTSIDE RANGE OF PRESSURE CORRECTION TABLE; 7105P769 MM. HG'
[63] +RETURN[pRETURY]
[64] AROUND2:DATA[I;SWITCH;(1.]+TEMP
[65] +(126)+PUDGY
[66] RETURN4-RETURN,(126)+1
[67] '161 VOLUME (UNCORRECTED) OF. OXYGEN COLLECTED.
[68] DATA[I;SWITCH;7]+LI
[69] +(126)+FUDGY
[70] RETURNI-RETURN,L11ST+(126)+1
[71] "
[72] ' HAVE YOU MADE ANY ERRORS II.' EDTERING YOUR DATA ?'
[73] +(-11MPTR=t3)/GOTCHA,GOAL,GOLLY
[74]
[75] ' ENTER THE NUMBER OR NUMBERS (FOUND IN THE 1 I) OF THE INPUT STATEMENTS A

SSOCIATED WITH'
L76] ' THE DATA YOU WISH TO CORRECT. IF MORE THAN ONE NUMBER IS TO BE ENTERED, SEPAR

ATE WITH BLANKS.'
[77] GOTO+0,(((t(Dcl«phETURN)-1)EE),1)/EPTURN
L78] GA1' E4-(2,DL)pRETURN,14)(RETURN-2)
[79] +((pG0TO)S2)/RETURN[DO]
L80] GOT0+14UOTO
[81] FUDGY4-(126)-GATE[2;(GATE[1,jEGOTOL1])/IDg]+2
L82] +GOTOL1]
[83] GOTCHA:PART4-((20xL0.5+DATA[I;SWITCH;t0i2)-700) +20
L64] PART+DATA[I;SWITCH;8]-TCTABDELLO.S+DATALI;SWIT011;5]-15;PART]+

0 03
L85] RART4-PART-PTABLEELO.5+DATALI;SWITCH;5i-15]
[86] DATA[I;SPITCH;6]«(PERCENTLNUMBAH]x(DATA[I;SWITCH;2]-DATAI[I;SWITCH;4])x25528020x(

DAT/ILI:SWITCH:51+273.16))
[87] DATA[I;SWITCH;6]+DATAEI;SWITCH;61:33475.758xPART
[88] FUDGE4-1(DATA[I;SWITCH;6]-DATAII;SWITCH;71)iDATA[I;SWITCH;67
[89] "
[90] .+((FUDGE<.0.1),J(0.15YUDGE)A(EUDGE50.2)),((0.25FUDGE)A(FUDGEs

0.3)),(FUDGE>0.3))/VG,1 ?G,PG,UA

Figure 3. Steps.28-60 of CHEMLAB1

71

Figure 4. Steps 61-90 of CHEMLAB1

Line 79: This line is the Question Retry Area termination check. It checks to see if GOTO
has fewer than 2 elPments; this should occur only after the last student retry
request has been processed.

Line 80: This 'line truncates from GOTO its first element; this element is the statement
number associated with the question that has just been processed. On the first pass,
this element is set to zero and truncated.

Line 81: This line calculates the value of PUDGY necessary to cause a branch back tojLine
79 which is the Question Retry Area termination check. Note that this ,tanch-back
will occur from the termination point of the question being retried.

Line 82: This is a branch to the first element of GOT°, which is always a statement number
and always a question entry point.

The relatively elaborate data entry and correction features just described make it (..:asy for
students new to the computer to use it without frustrating delay. These kinds of features are
especially important in the programming of functions to be used by a large number of students
within specified, limited, period of time.

Other features of this program and auxlliary programs necessary for its operat; 'n will be
presented, as time permits, in the oral presentation.

general Observations and Conclusions

A major program evolves, in general, from many drafts. Problems often seem to arise where
no difficulties were anticipatai. It is very important that the academic directions and
de:isiOns come from the faculty member. It follows from this that a faculty member, needs to keep
in clo e touch with the development and debugging of the program, particularly in the early
stages. ir good, operating, interactive program represents a large investment of programmer and
faculty time. Some of this investment may be recovered if an attempt is made to generalize the
program at, that significant blocks of it can be used in other applications with minor changes.

If the computer is not under your personal control, it is important to consult with the
computer center before, trying to process a large number of students in a fixed period of time
through' an interactive program. Languages such as APL are often run simultaneously with other
remote languages, and with background batch processing. A low priority assignment to the APL
system you are using may result in relatively long delays between the transmission Of a line by
i student and the response by the computer. Delays of 10.sec3nds are long, and of 30 seconds or
more destructively frustrating. Often a change in priority will reduce such delays to a few
seconds at most.

Some students view any kind of computer mediation of insturction as a negative,
depersonalizing, undesirable interference-with"the educational process. It appears to us to be
important to- emphasize whenever possible that programs such as CHEMLAB are intended to improve
student-faculty contact by moving some routine data manipulations to the computer, and using
that time saved for dealing' with whatever some of the current "real" problems are. In other
words,, tne_time_spent -by-the faculty-and student in the laboratory is not necessarily reduced -,
but the questions and discussions which occur seem to be devoted more to "how" and "why" rather
than "is the number right?" or "what did I do wrong?".

ACKNOWLEDGMENT

We are particularly indebted to Mr. James Higgins, academic manager of the SUNY-Binghamton
computer center, for his encouragement and support of the development of our computer
applications in Chemistry_ We were very fortunate is having available to us the programming
assistance and expertise of Mr. Kevin Kelley and Ms. Anne Kellerman.

FOOTNOTES

1. Thomas R. Dehner and Bruce E. Norcross, "The Use of APL in Computer-Lssisted Instruction in
Freshman Chemistry"; presented at:

a. 158th National AmeriCan Chemical Society Meeting, ''New York, September 8, 1969;
b. "Second Conference on Computers in the Undergraduate Curricula", Jang23-25, 1971,

Dartmouth College, Hanover, New Hampshire;

c. "Conference on Computers in Chemical Education, and Research", Jali!19-23, 1971,
Northern Illinois University, Dekalb, Illinois.

72

A COLLECTION OF GRAPH ANALYSIS APL FUNCTIONS

E. Girard, D. Bastin and J. C. Rault
Laboratoire Central de Recherches

Thomson-CSF
Domaine de Corbeville, B. P. 10

(91) Orsay, France

Summary

A set of functions dealing with graph theory is presented: graph description,
modifications, k-connectivity analysis, and search for paths with given properties. Graph coding
coherence and the modularity of APL functions enable one to link these different procedures at
will and to use...them in sugh .differentlees as digitalcircuit
detection, and I. C. mask layout.

The APL functions are given in Appendix 1 and detailed examples in Appendix 2.

1 - Introduction

Graph theory is encountered in many fields of application. Graphs are very useful for
modeling and describing processes and systems. Thus there is a constant need for algorithms
dealing with graphs and leading to efficient computer programs.

During the development of several projects concerning simulation of digital circuits,
generation of fault detection and location sequences, and layout of printed and/or integrated
circuits, we had an opportunity to experiment with many graph theoretical algorithms. This led
us to write a collection of APL functions which we intend to describe in this paper.

The main data structures and general functions for handling them are first described. Then
a collection of APL functions dealing with many aspects of graph theory are detailed.

.."=-

Graph Description

The choice of a good description for graphs is not a trivial task. Two main constraints,
usually conflicting, prevail:

- keeping memory occupation to a minimum,
providing efficient execution.

Several coding schemes are generally used. On the one hand, there are list structures
which meet the first requirement but have the drawback of being unwieldy to handle; on the other
hand there is the connection matrix in which the Ith row contains the numbers of the vertices
connected (next neighbors, predecessors or successcir7S i-g-II-ese maY-bel-to vertex numbered I.
This coding scheme meets tie second requirement Out has the Objectionable feature of wasting
memory unnecessarily.

This state of affairs menus that one should not have a single coding scheme but rather the
capability of several schemes with the appropriate routines for switching easily from one to the
other.

In what follows we use mainly two coding schemes:

In the first method, akin to list processing, graphs are described by means of a
single vector whose components are either zero or integer indices. The indices for
the vertices connected to vertex labeled I (adjacent vertices predecessors or
successors accordingly) are the components of this vector comprised between the Ith
and the I-lth zero. This way of describing graphs is convenient for APL for it
keeps memory, occupation to a minimum while it is well suited to APL operators. The
only disadvantage in certain applications such as graph reduction, is the requirment
that vertices be numbered from 1 to N, with N the total number of vertices in the
graph under consideration.

-

In the second metmod, graphs are described by ripens of the so-called arc matrix (or
edge matrix in the case of unoriented graphs). This matrix has two columns and as
many lines as there are arcs (or edges) in the graph. This scheme leads to memory
occupation usually larger than that in the first scheme but it is better fitted to
the array capabilities of APL operators.

73

3eneral Functions

According to the preceding coding schemes it ii necessary to handle vectors consisting of

groups of indices included between two separators, namely zeros.

V PR N extracts the Nth group from vector V.

Example:

1 3

2 3 0 1 3 0 1 2 4 0 3 u PR 2

V PP N gives the components stored in a given vector V between
the zero whose index in V is N, and the preceding zero.

, Y SN N

Example:

Example:

2 3 0 1 3 0 1' 2 4 0 3 0 PP 10
1 2 4

indicates which groups contain a component of value N.

2 3 0 1 3 0 1 2 4' 0 3 0 Z,A' 3

1 2 4

V SR N gives the indices of ez..111 0 ipmediately following the
components of value N in a given vector V

Example:

V mobIn W

Example:

2 3 0 13 0 1 2 4 0 3 0 SR 3
12

replace; in the vector V the group of number W[1] by the

group formed by M[2], XXIX%

2 3 0 1 3 0 1 2 4 0 3 C fJOCIFY:2 5 C 7

2 3 0 5 6 7 0. 1 2 4 0 3

N PERL V exchanges in vector V components whose values are N and N[2]

Example:.

N PERB V

Example:

3 4 PEEL 2 3 0 1 3 0 1 2 4 0 3 0
4 0 1 4 0 1 2 3 0 4 0

exchanges in vector V the two blocks whose ranks are N(1] and N[2]

3 4 PERB 2 3 0 1 3 0 1 2 4 0 3 0

2 3 0 1 3 0 3 0 1 2 4 0

74.

Three special functions for sorting and deletion are constantly
used. These are:

TTRIC V:

GO1 V:

TRI V:

CODE DECODE V

Example:

sorts a given vector V in ascending order with
deletion of multiple occurences.

deletes multiple occurrences in a given vector V.

terges groups from a describing vector having common
components, into a,single group..

decodes the vector V according to the code provided by the matrix
C.-31)E where the first row corresponds to the new numbering and the
second one to the first numbering_

I.;

0

2 3

2 '14

I.: DE CCDE 2 3 0 1 3 0 1 2 4 0 3 C
2 1 0 4 1 0 4 2 3 0 1 0

4 - Graph-Describing Functions

This niladic fu'n'ction simply builds up, in a conversational mode, the graph describing
vector foc both oriented and unoriented graphs.

Input: for each vertex the list of its successors (or of the adjacent vertices)

Output: the resifting describing vector.

In the case of unoriented graphs the description is Checked for inconsistencies and ill
described vertices are printed out.

An example is given in Appendix 2 and will be used throughout this paper for illustrating
the different APL functions

Functions OBTPRE and OBTSUC:

These two Compleaeitarmonadic, funCtions allow, in the case of oriented graphS, one to
obtain the predecesSor vector PREDEC from the successor vector SUCCES and vice-versa.

Example:

511CCE.$'

73---CT-3-0405C604 7.CC60S07 10 0 E 11 C 12
C 13 0 14 15 0 12 0 16 17 0 14 18 C 0 0 20 0 22 C 22 C
11 0

D-1'REDEC.4-OBTPRE LVCCEEGul 403LU4 7 0 50G9 0 7 10 0 E. 0 6 0 10 22

0 10 0 C la G0 11 14 0 12 0 13 16' 0 13 G 15 :2-J

20 al C

1,4-0E43UC PRLDEC
3 0 3 G , 0 5 0 6 0 4 7 C 5 C

C 12 C 13 0 14 15 0 12 0 16 17 t-

C ;1 C

75

Function OBTAJ:

This is for deriving the mnoriented graph associated with an oriented graph.

ALA2219:
L+ADJAC4-05...!ADJ SUCCEb

3 0 3 0 1 2 4 C 3 5 C 0 4 C 7 0 a 5 7 G G 8 9

C .7 9 10 0 7 8 10 0 t' 9 11 0 10 12 22 0 11 13 14 0

12 14 15 0 12 15 16 0 13' 16 17 C 1.4 15 13 0 15 C

16 C 26 C 19 22 C 22 0 11 20 21 0

Fumctions ARETE 1ECT:

The arc matrix ARCNAT or the edge matrix EDGNAT are derived from the corresponding
describing vectors SUCCES or ADJAC by means of the function ARETE (French for "edge"):

ARCHAT 0- ARETE SUCCES

EDGMAT 0- ARETE ADJAC

In fact two different funztions .are used: one, ARETE, if multiple edges are not considered;
tae other; AR, vFin oulipTtiages are present.

Conversely, the describing vectors SUCCES and ADJAC are derived from the corresponding
matrices:

SUCCES 0- VECT ARCNAT

ADJAC 0- VECT EDGNAT

Vhqels

Function ROUE (French for "wheel") builds up the describing rector ADJAC for a wheel of
given order. The "hub" is the vertex labeled 1 and the otehr ones are on the rim.

Example:

ADJAC *- ROUE

ilOUE, 5

3 Li 5 6 0 1 6 3 0 1 4 2 0 1 5 3 C 4 0

1 5 2 C

76

adjacent Vertices

Vertices adjacent to a given vertex labeled N are provided by the dyadic function ADJA:

ADJA SUCCES ADJA

Example:

:::UCCEE ADJA 11
10 12 22

3

i;UCCEL ADJA 1

Anpestpizs of a aiven Vertex

Function ASCEND gives the set of vertices from which a given vertex Labeled N may be
reached.

Rtv ale:

ANC SUCCES ASCEND

LUCCE Aa:END 22
20 c1 19

1 2
LUCCE5 ALCEUD 3

Delceftdapta of a give! Vertex

Conversely the function DESCEN gives the set of vertices which may be reached from vertex
labeled N.

DES 4 SUCCES -DESCEN

6UCCEL DEXEN 12
13 14 15 12 le 17 18

.5UCCEL DE 4. C6',7 8

9 7 10 5 Z 11 .6 12 4 13 14- 15 10 17. 18

77

Cognected Comnents:

Function COFCO derives the weakly-connected component to which the vertex labeled N
belon gs:

Example:

CSC 0)-- ADJAC COFCO

ATV/1C CC 1.,:C 0 12
12 11 0 10 8

20
A DJAC CONCC 20

.

Function COFCO in a simil.ar way gives the strongly-connected component to which the vertex
labeled N belongs.

gxample:

CFC SUCCES

CO ?CO 3
3

LUCCAT COFCO 7
6 9 I 7 10

LUCCE.; COFCO 10
E, 9 7 10

COFCO

5 - araph-Structuriag Functions

Here are gathered several functions used for modifying graphs byftemoval, addition or
duplication of arcs and/or vertices. The functions given below in this paper concern unoriented
graphs only. Similar functions exist for oriented graphs.

Addition of a Vertex

The added vertex -- is labeled with -am .index_egilal_to_the highest. vertex index in the graph
plus one. It is sufficient to indicate by the vector N which, o the vertices.should be adjacent
to the new vertex.

Ekample:

F2
.........

2 0 _
. 2 .5 O.

,

c 2 5f_ 0

78

3

1 4 6 AjOC.71: GRAF2
2 0 1 3 4 0 . 2 O 7 2 C 3

0 1 4 6 0

14 G 0 7 5

Deletion of Vertex

vertices may be remaved ir.om.a graph bt means of the Inaction Entill/5,..TAp. Ifertiges__
.to be removed are given in vector N. Vertices are relabeled.

Example:

4113
O- _ _ e; - - _

1 2 6 EilLEVS GRAF2
3 0 3012 C

Addition of an Edge

The addition of an edge is performed through the dyadic function AJOUTA:

ADJAC 41'" N AJOUTA ADJAC

7 i.-----at-licir,coraponent vector indicating the two vertices incident to the addee'edge.

Exanple:

...

3 4 AJOUTA GRAF2
1 3 4 0 2 5 0 2 5 3 0 3 4 6 0 5 0

79

Deletion of an ildae

similarly an edge is deleted with the function ENLEVA:

Example:

dergaftg _It-TwoVertices

3

2 4 EYLEVA CRAF2
2 .0 1 3 0 2 5 0 5 0 3 4 6 C 5 0

On merjing two vertices, the resulting vertex is incident to all the edges incident to the
vertices. Edges which may link these two vertices are deleted. Vertices ar0

N is_a_tromcomponout xectar_gicing_indices_of_lert.i.ces_to_be_serged.

Ex%mBit;

3 CONTim GRAF2
2 0 1 3 4 0 2 4 5 0 2 3

yertexaplitting

3 0

A given vertex may be split so as to generate two vertices. One of these vertices keeps the
initial index, the other is labeled with index N.+ 1' where N is the total number of vertices is
the initial graph.

Edges initially incident to the considered vertex are assigned to two resUltirl vertices
according to the user's choice. The way the splitting is performed is fixed in the left
aijukent of the corresponding function dubbed MITOSE for obvious reasons. This left argument is
a-vector W whose first component has for its value the index for the vertex to be split. ..The
other componentS are the indices for the vertices which should be kept adjacent to the first
resulting vertex.

Example:

ADJAC r V MITOSE ADJAC

3

5:.3.. 6 /.1-/T 0SE .aNF2
2 0 1 3 4 0 2 5 C) 7 2 0

80

,
5 0 4 5 0

ftninal subgraph Extraction

Extracting a maximal subgraph from a graph (which means simply keeping in the graph a set
of if vertices along with all the associated edges in the given graph) is performed with the
function SsGMhx. Vertices of the subgraph obtained in this way are then relabeled with indices
ranging from 1 to N in corresphndence with the initial order.

A1219.:

GRAPn 0-. SG SSGNAI GRAPH

0-
3

2 4 5 6 .5SGM X GLAR2
2 0 1 3 0 2 4 0 3 0

4

6 3 c124. knizakas EllESt12M

In this section we give a non-exhaustive set of functions for the determination of the
characteristic components of, or the reduction of, graphs.

...

DetwririgiKtioin'Of In-Degrees: anl_Dukpeeregk.....___

The function DENIM deo:anilines the in out-degrees of a shliSet,"'SEri-,of.vertICes:j4,-.
given graph.

D SUCCESS DENDEG SET

D is a two-component vector where D[1] and D[2] are the in-degree and the out-degree of SET.

,IJCCES DENDEG 12 13 14 15 16
1 2

gleckin for czcles

Cycles in a graph (assumed to be connected) are detected with the function CYCLE. The
procedure used here consists in deleting pendent vertices from the graph. Then pendent vertices
are deleted from the resulting graph and the procedure is iterated nitil no more vertices can be
deleted. If all vertices have been considered, no cycle preapint.

Exanplei.

3

CYCLE 2 0 1,3 4 0 2 5 0 2 q 0 3 4 6 0 5 0
LE GRAPHS POSSEDEAU,MOINE UN CYCLE.

.......

CYCLE 2 0 1 4 E 0 4 0 2 3 5 0 4. 0 2 '7 8 0 6 0 6 0

LE-GRATHE EST SANS CYCLE.

81

Checking Whether a Graph is a Wheel

The monadic function WHEEL returns zero if the tested graph is not a wheel, and R if it is
a wheel of order N.

Example:

C

N 46* WHEEL GRAPH

1ilEEL 2 4 0_ 3 C. 0 2 !i L C 0 1 3 5 4 3 G C 5 3 2 0

-4

6r.
i:M., 2 3 4 u.1 3 .6012 4 5 6013 3 610 5 3 2 0

C

WHEEL 3 4 0 3 6 0 1 2 4 5 6 0 1 3 5 0 4 3 6 0 5 3 2 0

Dp.tgLnigati2n 2f a Spanning r.2tte

This is a classical algorithm implemented by function ARbCOV. The result is simply a
describing vector for the spanning tree.. GRAPH must be renumbered by the function NEWNOT:

Example:

SPT+OLTADJ CODE DECODE ARECOY NE1 :k0T GRAPH

A

3-0

CODE DECODE ARECOV NEWPOT ROUE 5

2 0 1 3 0 2 4 0 3 5 C 4 6 0 5 0

82

Determination of Elementary Circuits

Function CIRELM implements an algorithm devised by J. C. Terman[9]-

Eycin 4- CIRELM GRAPH

Example: C TREL.V SUCCE r,
4 5 C .

5 6 7
7 8 9

8 .9 10
12 13 14
12 13 15 16 114

4 5 6 0 5 7 0 7 8

0 12 15 15 le 14 0.

8 9 1 C 0 12 13 14

Nembqr of Spanning Trees In A iheel

Function NSTW returns the number of spanning trees in a wheel of order N.

HUMBER 4"- NSTW

The algorithm is described by B. R. Myers[5].

In fact, two different functions are used, one is recurrent (NSTW), the other not (WsTm):
. . . .

Example:

hL2N 3

1C WST47 3
16

W 1:STN 4
45 45

IrT4T

121
121

- Graph Decomposition Into Conne:ted Components

Reduction of graphs int) their weakly-connected components is performed with the function
DGCSC which uses a classical procedure. The set of vertices connected to vertex 1 is first

derived and extracted from the initial graph, then the procedure is iterated on the remaining
graph.

WCCOMP DGCSC CHARM

83 '

VCZOMP is a vector formed by tie sets of indices of the different components delimited by zeros.

Example:

3 0 3 0 1 2 4 0 3 5 6 0 4 6 0 4 5 7 0 6 0 9 0

8 10 11 0 9 11 0 9 10 12 0 11 0 14 0 13 16 17 18

0 16 0 14 15 18 0 14 0 14 -16 19 0 18 0 0 - 22 0 21 0

DOCZX ADJAC
1 3 2 4 5 6 7 0 8 9 10 11 12 0

-
. .

13 14 16 17 18 15 19 0 20 0 21 22 0

Graph Decomposition Into Stomaly Connected Components.

Graphs are reduced in their strongly connected components by the function DGCFC Oich uses
a procedure similar to that described above:

Example:

DGCFC SUCCES
1 0 2 0 3 0 5 6 4 7 8 0 10 0 11 0 13 14 15 12 1C
0 17 0 18 0 19 0 20 0 . 21 3 22 0

-/

Determination of Pendant Vertices

Indices for pendent vertices appear only once in the describing vector

PENVER 4,- SOMPEN GRAPH

PENVER is a vector vhose components are the indices of pendent vertices.

Dgtermination of Rooted Trees

Vertices belonging to rooted trees are determined by considering first pendent vertices And
then determining paths from them to the roots. For convenience, roots are not included is their
corresponding trees but are considered as articulation points. Their determination ia performed
by the function REARHO:

input argument: describing vector

rese_ a vector containing the sets of indices of the'different
.. rooted trees. _

84

In the following, graphs are assumed to be connected.

Determination of Cycles

Independent cycles are letermined while building a spanning tree, Rooted trees are first
detected and deleted froa the graph:

input data: vectors describing respectively the graph and its
possible rooted trees.

result: a describing vector for independent cycles whose number
is equal to the graph cyclomatic number.

Determination of Lobes

A lobe (2-connected component) is. a set of cycles in which two cycles share a connon edge.
Lobes are determined with the function RELOBE whose input argument is the cycle-describing
vector and whose output is the lobe-describing vector.

Determination of Cut-Edges

Cut-edges (bridges) are edges which belong neither to a lobe nor to a rooted tree. Cut-
edges sharing a common vertex are considered as a single one.

I
DettEmination of Cut:Vertices

This. .section is concerned with the determination of cut-vertices between two-lobes, one
lobe and one tooted tree, or one rooted tree and one cut-edge. Cut-vertices within a rooted tree
or a cut-ed(e are not considered -here. Function BEPOAB is" used for this purpose.

For each Cv.-vertex three sets of data are provided as follows:.

a. cut-vertex between two lobes:

1. index of the cut- vertex
2. E 3. ranks of the two lobes in the lobe descrih.:.ng vector.

b- cut-vertex between a lobe and a rooted tree:

1. index for the cut-vertex
2. rank of the lobe in the lobe-describing vector.
3. negative of the rank of the corresponding rooted

tree in the rooted-tree-describing vector.

to Cut-vertex between a rooted tree and a cut-edge:

1. index of the cut-vertex
2. negative of the rank of the corresponding cut -edge in

the cut-edge-describing vector
3. rank of the corresponding rooted tree in the

rooted-tree-describing vector.

This war of representiig Cut-vertices (or articulation points) is convenient for finding
the components they connect. ,

.

1

_-- ______
3evera -1 of the above functions ace gathered in a single function, DECONP, for the redaction

..

and the determination of characteristic eleneets in a graph. 0
Au example is detailed it Appendix 2. .

.11

.85

Eulerian Circuits

Eulerian circuits are determined through a Hminirecoil" procedure [7,8] implemented by

function EULER.

In the case where the graph under consideration is not Euleriaa it is modified by
duplicating a minimum number of edges in the graph. Function ACREM performs this operation.

data input for EULER: graph describing vector

result: a aessage indicating whether the give graph is Eulerian
Or not.

If not, the list of the paths to be duplicated is printed out. The Eulerian circuit is
described by a vector formed by the indices of the vertices, given in the order they are

encountered along the circuit.

Example:

EULER Efri,

2 2 0 4 3 0 5 6 0 7 8 0 1 2 0 3 3 0 5 6 0 7 7 0

LE GRAPR2 N'EST PAS EULEHIE; CREiVINS AJOUTES :

2 4

3 5 1

7 5 2 4 8

CIRCUIT EULERIEN :

1 2 4 8 7 5 2- 4 8 7 5 2 4 7 6 3 6 3_115 1 2 3 5

ecompoSition Into 2- 4nd 3-Coinect Componolts

This decomposition takes advantage of results, established Kleitman[4]; for minimizing
the ilumber of pairs of vertices for which either two- or three-vertex disjoint paths are sought.

The graph is 2-connected or 3-connected) if these two or three) disjoint paths are found.
In the case that no such paths exist, the cut-vertex (or cut-set) linking two sets of 2-

connected (or3-cqnnected) components is provided.

This procedure- is then iterated on tIle.two resulting sets.

A special labeling procedure is.performed to find the vertex disjoint patbsf3).

86

Example:

CODE DEC3C
6 0 3 8 9 0 2 4 7 0 5 6 7 0 1 4 6 8 0

1 4 5 0 3 4 9 0 2 5 9 0 2 7 8 0
L.OMPOSANie J-CONNEAE: 1 4 5 6 .

.COMPOSANTE 3-CONNEXE: 2 3 4 7 8 9ELEMENT NON 3-CONNEXE: 4 5 8

7 =. Concl4Sion:

f.
The use of this set of functions, which is constantly undergoing improvement and extension,

is-illustrated in Appendix 1.

It has been proved to be very useful due to modularity, extensibility and interactiot
capabilities provided by ttt,e APL system.

Interaction is iesItable for problems which camnot reasonably be solved in a fullyautomatic manner. is the case for problems encountered in graph theory.

Until now, however, in this study APL has been considered more as a tool for establishing
rapidly and economically the merits of different algorithms dealing with graphs.

As soon as an algorithm or a set of algorithms are declared suitable, they are turned over
to professional programmers for translation into another 1-,cguage (mainly FORfRAR) in order toproduce a more efficient program which is of easier access to the whole engineering community.

At the present time this system is intendzd for development purposes; but with the spread
of APL and the imminent availability of computing systems built around APL this situation may bereversed. In this case the use of such design automation tools could be contemplated at anystage in the design process.

The transfer of algorithms from the designer to the engineering progran developer usually,
requires no flowcharting. The APL listing itself is considered here as a reference document.

We feel also that the use of APL language could be extended as a convenient vehicle for
communication. We suggest generalizing its use to the formal description of algorithms dealingwith graphs.

ACKNOWLEDGMENTS

The authors wihs to express their gratitude to Ht. P. ROSen-Stibli-I-6C-PECali-Pratigue des
Hautas Etudes (PARIS) for his Advice and many stimulating discTlgsions, and to the SESCOSEN:1'ompany for their finandial support.

BIBLIOGRAPHY

1. C. Berge. The Theory of *.;raphs. Methuen and Co.: London, 1962.

87

2. C. Berge. GtAnsE et Enelgraphes (IMOD), Paris, 1970.

3. I. T. Frisch. An algorithm for vertex-pair connectivity", Intz glz Control, 1967, Vol. .6,
No. 6, p. 579-593.

$. D. J. Kleitnann. "Method for investigating connectivity of large graphs", LEER Trans. on
giEsaa Theory, May 1569, p. 232-2??,

5. B. R. Eyers. "Number of spanning trees in a wheel", IEEE Trans. on Circuit Theou, Marcy
1971, p. 280-82.

6. O. Ore. Thgor/ cal Graphs. American Mathematical Society: Providence, R. I., 1962.

7. P. Rosenstiekl. Graphes 'nuts vecteurs et leans mots. Cours a llEcole Polytechnique, Paris,
(avec la collaboratLon de F. loniez et J. C. lirmond).

8. P. Rosenstiehl. nabvrinthologie Matheastique" fiathematiaues et Sciences ausaines (9ese
'armee No. 33, 1971, p. 5-32.

9. J. C. Terman. "le efficient search algorithm to find the elementary circuits of a graph",
C. of the ACA, Vol. 13, No. 12, p. 722-72:,, December 1970.

........

88

APPENDIX 1

APL Functions

Statistics shoving the f-equencies of occureace for tie different APL operators is givenbelow. It has been used for a quantitative comparison between APL and FORTRAN programsperforming the same operation.

OPERATOR NUMBER OF TIMES PREVEN6Y
OPERATOR OCCURS

OPERATEW? NCRERE D'OCCURRENCES FREQLENCP

20.5527
11.4052
9.3810C
9.06968

-71014554
6.85984
6.50052
4.08248
4.51538
2.64694

2.25769
2.00306
1.44025
1.3624
1.'28455

1.7067
1.2067
C.583885
0.544959
C.45710e
0.467108

p -

528

293
241
233
181
177
1E7
12R

V 116
68(

63

53:1
37

35

33

31

15

14
A 12

12

11
7

V 5

I
4 3
4 3

2

I 2

1

1

1
0

1

1

-0
0

o

0

0

0
T 0

0.428182
0.27248
0.194622
0.194626
0.116777
0.11E777
C.0778513
0.077E513
0.0329257
0.0329257
0.03E9257
0.0329257
0.0369257
0

0

0

0

0
0

[13 1","4-tI4'0
[2] --.(2+:/NL:13),1":-L.(4//,:[;2]=I)-+/!-:L;1],--.7-.71-1
[33

4 (1 5) ; TL GiLA PPE I P.4 EULIThi itj
[b] L',/i(i;<(j)/ 1PE
[6] V.-(i14-(D>0)/1PD).j 4-0
[7 -(v/.:;Ncji--.72F/C(.k.'[;1 3(il)/1,1;23)/s
LO] -7 ,0 ,V
[03 iI-NL)Ndll)JLt.')[1]
[it -(1(j+.1.+ I V=0) ,R-((;2])/!.[;1])[1])
[11.1 PIP[1.PP3]4-(DIE[1]]-1).,*;[11Ccii]]+/-1
[1 2] '(1 2i-(I-Ii-1) = p ! !) p 1) [:])),:' (;3) ,Pr.r.J.E[T+1 3..1.!',7+1 (P:11 1]c.7."...; if!1 C.3 ;

[133 (x-A/O=D) , (1tpLi.-/i)p0
[1.44 3 (1 ;,)p " I. GRA PPE EL T EULERi . '

[15] V

V L:4-1./ /.[JA N'
C1 J .-TTRIC (I: PR ui),V SN 1.

[2] V

V AJOUTA V ;A ;:3
[13 2x-3eR
[2] Z-((V[13.1-1)p) ,A ,((-1+1,E8j)l'/-:,jP(VE.-13-1)cZ),(5-1-1./%.'),(-2.+(V4-(Z=0)/1)[A.-filini)i'OP
[3] V

......
A JO Vt'S V ; I ;R..

[1] / V. /4-0
[2] -()/
[3] -2 .VV ,V PR -NL13
[4 3 N 0
[5] V

V 'b.-A RE!: OV ' ;A

[11 /*-1 + Li-0
[2] Zi-Z,(r/(A</)/A+k
[3] -.2x1"<+/ W=0
(Li] V

I) .

V 14-A NET V ;A ; ;17

El] V=1.-p14.- t 0
[23 (I xA =0)+A,-((:?xpA)p0 ,1)\A-i-V PR .T-Ii-1
[3] A,..-((),2)0!
[4] V

V/'.4-A REPT V ;A ;B ;I ;1'
[13 F.-+ I V= t 0
Lz3 ,(IxB=r,1)+B-4-(CzxpA jp C ,1)\11.-!.."T RIC V PR 1+1+1
[3] AR.-((-F-pV) .2)GE
[4] V

VZ-V ASCEND N ;.1' ;A
[1] -1-(0=pZ4V SN N) /I170.
[2] -1-2x/xpZ-4-Z 4/A-4-V SN ZE14-/+1
[3] V

90

-

[1]
[2]
[31
[4]

V.. NC CREkIR V;J;T;TT;S:t:E;LI.L;VC ;L
.(NCkt / V.-0)1 pZ.4-1,4-1C

;13. if/ (',1-ALEY'E i)[:

k A RE4-((pSFLOT) ,2)pAFLO24-(0:)[.13p4-,FLCT-(i
7((J>pSFLGT),I=J4-J+1)/9 4

[5] 14.4&21.,E I

[67 -0.(2=-TT) /11

[73
[8] T) ,1) /3 5

x OxliC+NC
[10] (L..-L ,/++/LL:/),V*-1" ENLEVS V
[11 SA:E.-(h.'ARK1;13z0).11(pPlAill:)(13
[12] (k.!1?).: ;23x0) / (p) [1.11
[13] Z+TTEIC((SI EEL) / -4/OIL C Si!) (;1 Jc...::%:;)//..q.; 23

-.(0 =pL)/G
[15])x:;.ZI/L)+2:4-Z+Z21. /L
[161

V Z4CIRELN G ;P ;if ;I ;J ;i2;62.TA
[13 P.4-11 p(K-,.1) ++1q=04,74P2'10

(GPRX[J]>P11]) A(GPR.KCJ JEP)A(CPRE÷(G PE PLR]) .0)[J4J +1]Eil PP ?[XD) /1C[3] -,(J<GGPIIK)/2
[4] -PE1 JEGPEK) / G
[5] Z-4-Z,(6,-(P7,0)/P),0
[6] -).(1<=1)/12
[7] 11-4-11 MODIFY .PLR3
[8.3 11411 moDITT{-PUi-13.)..(11 PR P.E-1'3) ,PEKfi
[9] 4'2 ,K+K-1-1-.14-P[K]-4-0

[10] R-4-K+1

[11]. .+2,(J4-0).P43'-(C PR P[K-1])[J]
[12] -).(P[1]=N)/0
[13] -).2, (P[1]-(-P[i]tlf-4-1),11 4-NpJ+0
[14] V

CCPCO N
[1] Z-4-((,7c2;)///),Z+(ZeV /1,5-CI!"/D N)/2 +1 DESCEN N
[2] V

VL÷V C014C I ;IC ;A

[1] Z÷,I+K+01
[2] -.(K<P2+2,(Ac2)/A-.-V PR Z[1:4-1:+1]) /2
[3]

VZ±A, CONTRA V ;A
[1] V-4-11 MODIFY E[1] ((A xR [23) / Pk 1;E13) ,(A [13) /A÷Z4V PE N[23[2] Z4 ((A -pZ) pV),(A4-((V=0)YIPY)lfi[2]])LTOP V4(Vx1/*1[2])+(N[13xV=M[2]).-.V>N[2][3] V

VC YCLE V ;T ;11

i.13 IV +If /r.:*V 3-4-0
[2] -).3+0=pT÷(TEh)/T[3] -.1 +3x1 2pi/T ENLE4 V
[4] (25x0=p1')DROP(25t36x0=pr)p 'LE GRAPIIE EST SANE CYCLE .LE CRAM POSSEDE 110 AVMS L11 CYCLE . '[5]

V Z÷ DECODE V
[1] Z-441[1;M[2;]1V]
[2] V

91

VDECOMP V'

[2] '
********* ************ * ****** ********.1

[3] '
* ELEMENTS REMARQZ,ADLE5 DU GRAM' *'

[4]
[5] It

[6] ARBO+REARBO V
[7] LOBES+RELOBE RCCYCL V
[8] PONTS+REPONT V
[9] POAk+REPOAR V
[10] ''

[11] ***** .**** ****** ***********wi*************************'

[12] * ENCHAINEMENT DES ELEMENTS 1 EMARQUABLE2 DO GRAPHS *!

[13] '

***** ************ ****** ********** *** * ** *********** P***t

[14] "
[15] DECRIR
[16] V

VDECRIR;I;A;V;W1;W2
[1] 1+0
[2] E1:-).((I+I+1)>I1POAR=0)/E2
[3] PR /)[3]<0)/E9,E3
[4] . 41÷' AU LOBE 1.
[5] -).E4,W2+LOBE3 PR A[3]

[6] E3:k1+1 A Ll'ARBOREECENCE ';W2+ARBO PR-A[3]
[7] E4:).E1,L1+'LE POINT D"ARTICULATION 7;A[1];' RT:LIE LE LOBE ' ;LOBES PR A[2]011;4/2

[8] .

POINT D"A.ETICULATION ';/.1".1];' Li: PONT 1;POf'T.:7 7P-/[22;' ,1 .

[9] E2:I+0 ",WOORESCENCE ';ARBO PR A[3]
[10] E5:4-((I+I+1)>T/PONTS=0)/011+Ii+0
[11] A+PONTS PR I
[12] E6:-o.((V+V+1)>pA)/E7
C13] +E6,W14-41.(W2EW1)/W24- OBES L;N A[V]
[14] E7:V+1
[15] EB:-).((V+V+1)>pW1)/E5
C16] -4.E8,L4-4LE PONT ';A;'. RELIE LE LORE ';LOBES PR. W1[1];' AU LOPE ';LOBES PR W1 [V]

C17] V

VCK DEC2C V;I;A;K;C1
[1] ((/-4-0)=p,A+2 CHEMIN V)/5

[2] Cl+Clt(Ci+DGCSC A ENLEVS V)?.A

[3] OK[K]LEC2C(K+TTRIC A,C1 V

[4] +3x/<+/C1=0
[5] (22x24CK)DROP(22+23x22pCK)p'COMPOSANTE 2-CONNEXE: ELEMENT NON 2-CONNEXE: ';CK

[6] V

VCK DEC3C V;I;A:K;C1
[1] ((/+0)=p,A+3 CHEMIN V)/5
[2] C1+(C121/A)+C1+C1+(C1+DGCSC A ENLEVS v)aL/A
[3] CK[K]DEC3C(K+TTRIC A,C1 21: I+I+1)CSGIIA.:(Ax.-1l [1]E7 PR A[2])AJODTA V

.3x/<+/c1=0
[5] (22x32pCK)DROP(22+23x3'apCK)p'COMPOSANTE 3-CONNEXE: ELEMENT NON 3-CONNEXE: ';CK

[6] V

VZ+DEGRAF;ORIENT;I;SON;FIN;J;SONMET:A
[1] 20p";23p'*'
[2] 20p' ';'*DESCRIPTION OU GRAPHE*'
[3] 20p' ';23p'*'
[4] "
[5] --.' 'LE GRAPHE EST-IL ORIENTE ? (REPONDRE OUI OU NON)1

[6] DON1:0RIENT+3pa
[7] +((A/ORIENT='OUI')vA/ORIENT=INOR')/SUITE1
[8] COR1:-I.DON1,D+'MAUVAISE REPONSE, RECOMMENCER'

[9] SUITE1:0RIENT+A/ORIENT='0U1"
Z10] ''

[11] 20p' ';23p'*';(4x1-0/i/ENT)p'*1;8p,*1
[12] 20p";'*DESCRIPTION DU GRAPHE 1;(4x1-ORIENT)p'NON ';'ORIENTE *'

[13] 20p";23p'*';(4x1-0R/ENT)p'x'OP'*1
[141
[1:5] 'LISTE DEL ';(12x0RIENT)p'SUCCESSEURS ';(18x1-ORIENT)p'SOMMETS ADJACENTS

92

[1E] "
[17] ' INSTRUCTIONS'
[16] '

[19] 'EN CAS D"ERREUR DE DESCRIPTION POUR LE SOMI..ET I,TAPER: SONMET:I A LA PLACE'
[20] 'DE LA DESCRIPTION D"UN SONMET ULTERIEUR.'
[21] 'POUR TERMINER LA DESCRIPTION TAPER: FIN'
[22] '

[23] "
[24] Z+iFIN+SOMMET+I+J+0
[25] . SUITE2:'SOMMET ';I+I+1,
[26] 'E0M+,L
'[27] -).(OzpSOM)/TEET1
[28] ..+MODIFx1J
[29] .-/TE2,Z+3,0.
[30] TEST1:-q(1=pSON)ASOM[1]=0)/TESTF
[31] -,5014[1]=0WSUITE3
[32] -0.MODIFx1,1

[33] -SUITE2,Z+Z,SOU,0
[34] SUITE:3:j+1
[35] /+50X[2]-:
[36] .+SUITE2
[37] MODIF:Z+Z MODIFY,I,SOM
[38] J+0
[39] /++/Z=0
[40] -SUITE2
[41] "
[42] TESTF:'NOMBRE DE EOMMET.. DU GRAPHE ';I-1

[43] -q0RIENT=1)/0
[44] TESTCO:A+VERIFY Z
[45] -).(0=pA)//+0
[46] SUITE5:1SOMMET ';A[I+I;-1]
[47] Z+Z MODIFY A[I],
[48] -(r <pA)/SUITE5
[49] 4TESTCO
[50] V

VZ+V DEMDEG A;I
[1] Z+2p1 +0

[2] -q2x1 <pA),(Z[2]+Z[2]++/-(V PR Arn)LA),2;[1]+2,[1]++/-(V SN A[I+I+1])EA
[3] V

VZ+V DESCEN N;I;A
[1] -q0=pZ+V PR N)/I +0
[2] -2xixpZ+Z,(-AEZ)/A+V PR Z[I+I+1]
[3] V

VZ+DGCFC V;I
[1] Z+t/+0
[2] .-q(I>+/V=0),(/+/+1)e-Z)/0 2
[3] .+2,7i+Z,(V COFC0 I),0
[4] V

VZ+DGCSC, V;I
[1] Z+t/+0
[2] .+((/>+/V=0),(/+/+1)cZ)/0 2
[3] .+2,Z+Z,(V COMCO I),0
[4] V

VZ+N DROP V
[1] ZA-(Np0),(((pV)-N)p1))/V
[2] V

VZ+N ENLEVA V;A
[1] Z4-(V MODIFY N[1],(AW[AtN[2]]+0)/A+V PR N[1])MODIFY N[2],(AA[AtN[1]]+0)/A+V PR N[2]
[2] V

VZ+N ENLEVS V;I
[1] Z+(-Val+TTRIC,N)/V+I+0
[2] (2x1xpN+N-1),Z((V-1+pZ PR fl[i])pZ9,(V
[3] V

((Z=0)/lpZ)[N[I]])DROP Z+Z-N[I+I+1]<Z

93

ULE R V ;I ;2'11..
[1] 'f-(pk+ARET V)[,1]p0
L2] A

[3] -P(0TC/+(Z1.1]:=AiC ;2])/1 (pA.:)[1]])/5
[4] +3 ,(Z[2]+-2,C2]),(TC/14-1).E+L (;:+1.1[I+((0=TC/])//)C:.][5] . -.).(1=p1.)/8
[b] ZA-L[I+1+pL],2",
L7] ,L+IpL
[8] 1 5) p ' ' ; /RC IT 'LEW
[9] Z+4)(Z>0)/Z
1103 V

[1]
[2]
[3]

[1]
C2]

[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]
[9]
[10
[11
C12
[13
C14
[15
[16
[17
C18
L19

Z-(-G OM ;

-0-(0=pV+,V)/pZ+1.X+0
.4-(2x.K4pV).Z-Z (VC/Cc) /VCKA-/?+1 3

V Z-4-M INDIC V
Z4-(1? A ..V)/1(01) [1]
V

VZ÷LS N
4.(N=1 2)/3 4
4.0,Z4-(LS N-1)+LS N-2
+0,Z÷1
Z+3
V

'VIVA RQ UE ;.SM ; ;R ; ET ; I
NA Eli [SM ;2]+Sill+VC I+1]
61T4-0(7,PR)P(,OMER;]),(.0MAR1.'[MER;2

(P +MARXCSM[I];]xO
4(5 +P[1]=0) W[;3]-4-iITE ;3 If-NT[;1]xn
JUL ;414-111T [;4]+MTC ;1]x <//./TC ;4 7]x0
-4.79(514+13M , MT C ((v / MARK [kV? ;23 ;] =1,12' [

;4 3 5] =0
-(8+v MARK[V[2] ;]=0 9914.4.RK[fILL' ;2] ;
--(2+7x (pSk)</+1 +1)
P+I+V [2]

] -4.(0=0/+(MARI:LE;'1E,O,I)MARKCI;])10
-).(10+2xI=V [1]);flP4-23,I+I[1]

] 74-TtI4-190p5FLOT[I.]+-4FLOTEI4-(PEV)/P470P]
] -).(AFLOT[E-4-M DIC.V+P[1: ,I+1]]= 1)/16

...(AFLOTERT+1.9 INDIC4V1=0)/1'G.
3' .417 ,AFLO'2[.;. ,,RT SFLOT [V] 4-0
] AFLOT[R],--AFLOTER]
] -)-((PP)>I4-I+1)/13
] kARK4-(pMARK)p0

] ;]) ,5 FLOT [14[R ; 2]] ,A FLOTE (R4-(ME ;1]=EN[I]) / (pk)[1

/!.TE ;3 .1=0 RT4-(M[;2]=SMEI])/1(PM)[1]]/

;3 4])/1(pM2')C1]);2]),(MT.L ;3]+ALT[;3]+/IIT[;2]x2.-:-/MTC:

]+/,9 ' [;3 4] 4 3 5]C)),MT[;14]+MT[;4]+/./T[;2]x

] V

VZ+W ITOSE 11; W1 ; ;A' ; /
-[1] 24-(V MODIFY W1 9W :.-;V PR :11) (W14-1/1.1])[2] -(('4-1+1)>) /0

C3] .42 9Z-Z. MODIF.Y U[I] ,N /WI-V U[I][4]

VZ+W MODIFY NV ;M
] Z+C(M-1 4-phi PR NV[1])pW) , (1 DROP NV),0 (Y=0)/ tpW)[NVtl]])DROP W[2] V

VZ+NENOT W ;I ;J
[7,] Z4-CODE4- ,W ;
[2] Z-4- (I ,e1)PERL (I ,J4-((Z?/"+./i-1)/ Z)113YPERB Z
[3] CODEA-(I 9J)PERB CODE
[4] H.(1.<4-/Z=0)/2
[5] CODE4-(291+pCODE)p0 ,(CODE+GOM(CODEA0)/CODE),0 'COM(ZgO;)/ Z
C6] V

V 24-N STW
[1] Z '-((LS N)*2)+14x 1+21N
[2] V

94

V 2,-OBTA DJ V ;I

[1 Z4.11:4-.0

[2] 2x/r<+/ V=0),ZI-Z (TTRIO(V PA I),V SN 1+21'1) 90
[3] v

V Z+OBTPRE V ;I

L1] Z+1/4-0
[2] 4.(2x/<+/ V=0), Z4-2; , V SN 90

[3] V

V z-oBTSUC V ;I
[1] ZI-1/+0
[2] -4.(2)(I<+/ V=0),Z-(-74(V SN 1+1+r)

[3] v

Z+N PERE 4',V
[1] 1/4-(k=0)/IpZ+W
[2] ,4.(1=0+TTRIC N)/O
[3] 24-(V[1/[,1]-1]P k), (r PR. N[2]) ,0 ((VENE21-1J-VENE1MPV[N[1]] DROP W) ,(k PR L113)
[4] V ,O ,V[N[2]] DROP

i%

V Z- N PERL ,i;

[1] Z-44/

[2] 40\1[1]=R[2])/0
[31 Z4-(N[2])<;),=N[1])+ (11 [1]x =ii [2])+Iix-weN

[4] V

vli-4-V PP N ;Z

[1] -)-(((Z4-(V=0)/ pV))1) / 3
[2] 40, (/V -1) pV

[3] ;/-4-Z[(ZIN)-1]DtiOP(Ii -1)pi,'

[4] V

VPI+V 2R N ;Z

[1] ÷(Nx1)/ 3
[2] 40,W4-(((V=0)/tpV)[1]-'_)(X
[3] W4-Z [N -1]DROP((Z4-() / ip V)LL']-1-Y0

V

V Z+LEARBO ;Iv ;I ;A ;13 ;K.

[1] W+SOMPELI V V. i:+1.14-11.+0

[2] -*((K+R+1)pi-:)/6
[3] -9.06 .pB+(-Befr)/B4-V PR W[K])/2
[4] *(1 <p(-AeW)/A+V 2R B)/2
[5] 42,W+4,13
[6] -).((I-4-I+1)>01)/K-4-0

[7] -*(04-.WE/DcZ)/6
[8] 4.(8,1-K=pB),B4-B,(-AEB)1A+(AcW)/A+V PR B[K+K+1]
[9] 46, (Z+7, ,B ,0) RBORESCENCE : ;B

[10]

Z+REC YCL V ;K ;I ;A ;11 ;NC ;F ;A RB ;AA ;TREE

[1] 4.(0=NC4-1+((+P/z0)12)-+/ V=0) / pZ4-TREE-4-1N+I+K+0
[2] A-4-(-AcARBO)/ A-4-V PR ARB- 9((-AEF+(ARBOz0)/ARBO)/ A4-t +/ V=0)[1]
[3] 4.(A LI-4-I+13cARB) /5

[4] 43) eF,ARB[l+pAR4])/A+V PP A[I]) ,AR3-4-ARB ,A [I]
E 5 7 4((nc>01.11+1).6-3 *I <pit) (,AA 9 0) 9E:4- CXCLE : ' -1+A RD IA L/3)DROP ARB
[6] -q0=pA+NA cARB ,F ,!:.^REE)/A+V PR ARB[CpARE-K-4-K+1])
[7] 43 (X) , (A RB-4-((pA RB)- pA RB),TREEtTREE ,KpOARB
[8] V

95

V2+RELOBE V ;KW ;U ;W
[1] if+-0
[2] li+K+1
[3] +((J1-10>+/V=0)/10
[4] W+V PR A
[5] -0.((JI-J+1)>+/ V=0)/2
[G] +(2>+/WELA-V PR J) /5
[7] 4.84q=1
[8] 4.3,1/1-(Z[A'-1]pV),(Z[K]DH0p ZEJ-13pV),(CON W,U),C(Z-(V=0)/1pV)[J]-1)DRCP V
[9] +3 ,V4-(Z[l DROP ZCJ -1]pV).,(00,14),((Z1-(V=0) pV)[J]-1)UROP V
[10] Z+ -V-I-K +0

L11 '+'((X.4-/C+1)> + / 7. ;7.0)/0
[12] +11 ,[]*. 'LOBE ' ;7, PR k
[13] V

ZA-REPOAR 1 ;K,,B ;C
[1] ZA-1I+K+0
[2] +((/A-1+1)= +11,0BES=0)
[3] Al-LOBES' PR .11+I
[4] +((X+K+1)>+ / LO3ES=0) /2
[5] 4.(1 BA-(AE CA-LOBES PR IC)/ A)/4
[6] +4,Z+Z ,B,/ ,K,0
[7] /4-0
[8] +((/.4-/+1)>+/ARB0=(i)/KA-C
[9] il+A RBO 21?
[10] +((KA-K+1), pA) /8
[].1] -0(0= pBA-(~BcARBO)/ B+V PN All(3) /10
[12] +((JA-0)=pe+LOL3E3 SN B)/15
[13] -4.((JA-J+1) >p(:)/.8
[14] +13 Z-4-Z ,B,C,-/,0
[15] +8,Z+Z,B,(-PONTS SN B),I,0
[16] V

V ZA-REPONT V ;.r ;B;K ;U
[1] ZA-

[2] 4((Ii-I+1)>+/V=0)/9
[3] -4.(IEARBO) /2
[4] 4.(0=c13+LOBES Sll)/2
[5] 1./+-1KA-0

[6] 4.(6+K=p14),O+U,L013126 PA 3[k.4-X4-1.1
[7] -0.(0= pA+(-AEARBO ,U)/ A+V PR 1)/2
[8] +2,ZA-Z,/,A,0

.'[9] Z+TRI
[10] V

VZ+ROUE N ;1
[1] Z+ (1+1N) ,O ,(N+1) (1+1+2)[2] -*(2+I=4),ZA-Z,1 (1+/+/+1)
[3] Z4-7,,1 ,0
[4] V

+SL ;Z ;1
[1] ,3 ;
[2] ZA-Z ,Z[I-2]-1.Z[-1+/*/+1]
[3] +2x 1/<11
[4] $ +Z[N]
[5] v

V ZA-V SN ;1 ;A
[1] 4.(0=PA+.(V=N)/1pV)/p3A-1/+0[2] 4.(2x/<pA) ,1++/O=V[[_r+.1.+1.-]]
[3] V

Z+S OMPEli V
[1] V[t(/V] +0
C23 Z4-(-(tf /V)EV)/117V
[3] V

96

V Z.4-V SR h' ;U ;A
[1] "4-(0=pA-4-(V=A)/1,pV)/pZ-4-10
[2] -0(2x0AQA-4-(])IA+A +1
[3] V

VZ4-G SSGMAX ;I
[1] Wtf, .0)/ V, Z4-1.T-0
[2] -+()eG)/4
C33 4.(2x/c /G),(V+V-V>+/ Zr-C),Z<Z- Z>+/ Z=0.
[4] -+(2x.r<1 /6) .Z.-Z .(V PR I) ,0
[5] V

VY1-MI V;K;J;Z;W;U
[1] .Y4-V-tr6C-4'0

[2] io-K+1
[3] 4.((J .- X) > + /Y =0)/0
[4] W-4-1. PR K
[5] -+((J4-.1+1)>+/ Y=0)/2
C63 4.(0=v1WEU-4-Y PR J)/5
[7])/ 9
[8] .4.3 .2-(ZCK-13PY).(2[1(]DROP ZCJ-13pY). (GOti) .((21- (Yr-0) / 10')CJ 3-1)PROP I
[9] 4.3 .Y.4-(Z[l]DROP Z[J-13pY) (GOH '11) (Z4- (I =0) / cI)Ce1 3- 1)PROP Y
[10] V

V Z÷T RIC Li ;K
[1] -+(O =p Z.4- ,) /R.4-0
[2] 4(2xX<OV).2-4-((Z<WC1C3)/Z).(,(Z=;,,AX3)/Z).(Z>li[iC*K+1])/2
[3] IX o
CHARACTER ERROR

.271 o
A

[3])CLEAR
)CARD

V 2-4-T RIC ti ;K
[1;1 +(877.0Z4-W+)/Ki-0
[2] 4.('2,'%X<PIV).Z-4-((2<iv[K])/Z).2:--WIA!])/.2).(2>it,[X-4-X+1])/2;
[3] V

V 2-4-TTRIC ; X

[1 .4.(07,p44-W-4-,W)/iC-4-0
[2] -.(2x.R<pW),:z3-4-((7,<W[K])/2) ,FiCK] (Z>hi[X-4-X+1])/Z
C33 V

V Z+VECT M ; I ;A
C13 A4-f .M).2.4-11-.4-0
C2] -4.(2x..r<A) ,Z+Z. ((NC ;13=r4-/+1)//i1C ;2]) .0
[3] V

V Z+VERIFY 41 ;I ;VI. ;V2
Cl] Z.4-1.1:+0
[2] A0:-+(n/(V1.4-W PR I)EV2.4-47 Sri IA-I+1) /A1
[3] 2+1; .1",(-1/1EV2)/1/1
[4] Al :-+(n /V2E1/1)012
[5] 24-2,/,(-V2EV1)/ V2
[6] A2:-+(I<+/ W=0) /A0
[7 -+ (0= p Z-4-2'T.R/C) /A3
[8] -).0 ,Crt-,LA DE SC RIPT ION DES SOMMETS ADJACENT S AUX SOMMETS ' ;2 ;' EST INEXAcTE
C93 A3: LA DESCRIPTION DU GRAPHS EST CORE RENTE
[10] V

V Z<-WHEEL V ; ; ll
[1] iii-+/ V=/<-2.4-0
[2] -+((111</),(3=÷/1/=.24-I+1) ,Z*0)/5 2 4
[3] -+2x0xZ4-(N-1)x(//-1)=+/1/=.T
[4] 4Z+0
[5] g-4-(3x(N=4)x Z=0)+(ZgO)xN-1
[6] V

V 2-4-WSTN .N
[1] Z<-((SL N)*2)+4x-i+2
[2] V .

97

L',UCCES+DECRAF

AppENDIX 2

EXAMPLES

***************-,,*******
DESCRIPTION 1 1. GRAPRI.;
************** ,k*k-AA A A

LE URAPHE ?::;T-IL ORIENTE ? (REPONDRE OU1 ob hoN)

***********4.4
DE'SCRTPTToN DU GRAPIIE oRIENTE
***********,*k,*,,,, l ***********

L TETE EEL; :;UCCE SSE UhE

INSTRUCTIONS

EN CAS Dti:RREDR W-01;;.!;Clf 11-"."101" pl,;11: SE SONNET ,TAPER: 'SOPt:ET ,T
DE LA DESCRIPTION D' UN SOMil:ET.cULif ERIEUR.
POUR TEEkINER ro,v :?771

SONNET 1
L:

3

EOMMET 2
:

.50MME't 3

4

SONNET Li

U:
5

SONNET 5

L.
6

501ET 6
GC:

4 7
SONNET 7

5 8

SONNET 8

9

SONNET' 9
Li :

7 10
50MMET 10
G:

8 11
SONNET 11

12
SONNET' 12
0:

13

98

A LA PLACE

SONNET 13
C:

14 15
SONNET 14
L:

' 12
SONNET 15
L:

16 17

u
w,e'ONNET 16 .

14 12
SONNET 17
L:

lU
SONNET 18

lG
SONNET 19
L:

20
OK iv:E r 2P

L:
22

SONNET 21
Li:

22
SONNET 22
L:

11
SONNET 23
Li:

FIN
N 0 NB ifE DE SUX:.!',:T f; RA Pil :

SUCCES
3 0 3 0 4 0 5 0 6 0 4 7 0 5 8 0 9 0 7 10 0 8 11 0 12

17 0 14 16 0 0 0 20 0 22 0 22 0 11 0

(24P REDE C4OBT PRE SU CCE S
0 0 1 2 0 3 6 0 4 7

13 0 5 15 () 16

0 13 0 14 15 0 12 0 1 6

0 6 9 0 7 10 0 8 0 9 0 10 21
0 19 0 0 20 21 0

0 11 14 0 12 0 1

OP I SUC PRE DEC
3 0 3 0 4 0 5 0 6 0 4 7 0 5 6 0 9 0 7 10 0 6 11 0

17 0 14 18 0 0 1.) 20 0 22 0 22 0 11 0

12 0 13. 0 14 15 0 12 0 16

99

LiADJAC4-CBTADJ SUCCEL:
0 3 0 1 2 4 0 3 5 6 0 4 6 7 0 4 5 7 G 5 E 0 9 7 9

11 0 10 12 2 2 0 11 13 14 0 12 14 0 12 13 1 C 0 13

10 0 20 0 19 22 C 22 0 11 20 21
0 7 E 10 0 P. y

14 15 19 0 1,

10

3

20

1

13

9

SUCCEt ADJA 11
12 .2

SUCCEO ADJA 1

SUCCEL. ASOEVD
21 19

SUCCES ASCEND
2

SUCCES DELCEN
14 15 12 1. C.

SUCCES DESCEN
7 10 5 8 11

22

3

1.2

17

6
0

:8

12 4 13 14 15 16 17 18

SUCCE:.: COFCO 3

LUCCEs, COFCO 7
5 8 '6 9 4 7 10

SUCCES COFCO 10
8 9 7 10 5 6 4

0

DECOt.? ADJ AC

PPC,BE LC EN CE : 1 :3 2
A BORE SCE 1,1 1: : 17
A Ri3CREL,CENCE : 16

RPORE : 1 20 22 21
C ACLE : 4 5 6
CYCLE : 5 6 7
CYCLE : 7 8 9

CYCLE : C 9 10
CYCLE : 12 13 14
CYCLE: 13 14 16 15
LORE :- 4 5 6 7
LOBE : 8 9 10
LOPE : 12 13 14 16 15

!

CRAP//B' *

.***,-*************,.******************************,.***
* ENC HA INEMENT DES ELEHENTS PEPARQUABLES DLI GRAPPE *
***********************************4*)- Y***************

LE POINT DTAIIICULATION 7 BELIE LE LOBE 4 5 6
LE POINT D'ART IC ULA2'ION 4 RELIE LE LOBE 4 5 6
LE POINT D'ARTICULATION 15 RELIT LE LOBE 12 13
LE POINT D'ART ICULAT ION 16 BELIE LE LOPE 12 13
LE POINT WARTICULATION 11 RELIE LE PONT 10 11
LE PONT 10 11 12 BELIE LE LOBE 7 8 9 10 AU

101

7 AU LOBE 7 8 9 10
7 A L RBORESCENCE 1 3 2
14 16 15 A L 'A RBOPESCENCE 17
14 10 15 A L 'Af?BCFESCENCE 18
.12 'A L RBORESCENCE 10 20 22 21

LOBE 12 13 14 16 15

MANAGEMENT OF APL TIME-SHARING ACTIVITIES
J. Higgins and A. Kellerman

Computer Center
State University of New York(SUNY)

Binghamton, New York'''.

Intrnduction

The managenent of a terminal systes at a university or industrial installation provides a
formidable task. The user needs take arious forms: (a) an educational program in the syntax of
the languge and techniques of programming to take advantage of the attributes of the language,
(b) consultation on programming problems (both trivial requests and those involving desing,
format, and construction of complex tasks, (c) publicity on operational considerations such as
hours of operation, the location and availability of terminals, scheduling, etc., (d)
documentation on existing programs and packages, and (e) assistance in administrative activities
such as the restoration of working copies of damaged programs, groups, workspaces, etc., and the
transportation of packages from our installation to another. The successful management of a
terminal system such as APL then involves not only the proper maintenance and honing of the
system to insure optimal utilization of computer resources for day by day activities, but well
defined procedures for providing the additional personnel support to satisfy the above stated
needs.

SUNY-Binohamtongs APL System

SUNY-Binghaiton has offered APL since the summer of 1967 andcurrentIyOPerates the XN6
version of OS APL /360_ There are i750 APL account numbers on_the-syStem; some of these shared by
a number of users. Practically every department On_campuS-- from theatre to geology and business
to nursing - uses APL, with various emphases. In addition to supporting the local campus, seven
sister SUNY institutions and six area high schools access our API. system.

The instruction and education section of the Computer Center offers a variety of-forms of
education and consultation t. Both potential and eisperienced users - students,
faculty, and staff - feel free to request support at various levels and have received a
reasonable degree of satisfaction. Initially, here as elsewhere, potential users were being
solicited. Now, rather than acting as apostles and missionaries, :e are in a position of
resoponding to ever-growing demands for service from existing and potential users. This change
in the nature of support is very gratifying, yet presents certiain problems.

Coincident with these rewards of satisfaction, the generation of enthusiasm, and staff
motivation are the assorted and. varied problems of developing the most effective system for a.7,1
levels of user education, of effectively motivating and supporting worthwhile classroom and
individual projects, of developing ways and eens of evaluating user and system performance, of
maintaining the system, and of general administration. with limited staff, facilities, and
budget. These problems with these restraints are present to some degree in all installations
supporting terminal systems. It therefore seems appropriate to present some of our experience,
problems, solutions and attempts at solutions with the hope, of developing a dialogue with other
installations.

It is the purpose of this paper, then, to discuss those problems inherent in maintaining
the system and in providing sufficient documentation and "publicity" on the availability of the
system and its features, and in posing some partial solutions for providing support for ensuing
generations of a core of competent and satisfied users.

Some Approaches

Terminal Allocation. It is an axiom of time sharing that accessibility of terminals to
users increases usage to a very large extent. It is therefore desirable to have terminals-
dispersed in strategically located positions to encourage usage. This provides considerable
problems, however. It is desirable to have terminals proctored for various reasons, including
programming assistance, terminal maintenance, and general supervision of scheduling and use.
These proctors are usually undergraduate students who, in addition to carrying out the above
tasks, interface well with students and faculty on a one-to-one basis.'Financially it is not
possible to proctor locations, which are scattered around campus and house only two- or three
terminals.

For the most part we have. avoided any serious problems by having some diverse locations of
terminals periodically checked; two large terminal rooms, containing 22 terminals, are
constantly proctored.

/OP/ 103

System Maintenance. In. the spring of last year, 1971, space was rapidly depleting for
saving of APL workspaces on two 2314 packs, with no prospect of adding an additional pack. APL

users were encouraged to cut down on the amount of material saved and the additional workspace
allotment was strictly controlled. However' by the beginning of Hay, with users gettidg "NO

SPACE" messages, the situation was critical.

The policy at that time of deleting users who have been inactive for three months)(as not
generating space fast enough.

As a last resort, all users were required to turn in a written form, giving their account
number and the workspaces that they wanted to be maintained on the system.

After several abortive attempts resulting from misinterpretation, of the documentation on
the standrard APL Ind utility, elackeof complete Aocumentation on the APL utility, our inability

to fool the utility into accepting an incremental dump tape for a full dump tape, and various
other blunders, the following procedure was implemented. With the help of three programmers and
a keypunch operator, cards were punched for each requested workspace. A full dump tape was made
and new APL packs were created. From the APL utility, an ACCT 0 to tape was made. This ACCT 0

lists all users and account numbers. This tape was accepted with a program that punched cards
with the system command)ADD for each account number on the old system. This deck was read into
the 1050 (a terminal equipped with a 1056 card reader) to add all usors to build the
directories, to the newly created APL packs. The process was very slow, since the 1050 reads a

card every 6.7 seconds and there were 1576 cards.,

The worskspaces, for which "save forms" were turned in and for which a card had been
keypunched, were restored to the new system, using the APL utility which can restore 100

workspaces at_a time.

A complete backup set of tapes was kept for people who neglected for various reasons to
submit save forms - for later recovery.

Although this method worked sufficiently well, there were several objections to ite-.Firt,
the very fact that the final Procedure was the result of a series of blenders with no'` better

solution in sight left ilittle coaruLe. ne 4yuu, .cue process or xeypuechieg the cards tor toe
workspaces and processing then through the 1056 reader was very time consuming. The paperwork

was a nuisance. The retrietal of WS's from the old packs and the creation of the new packs
monopolised the computer for a full day.

These' disadvantages coupled with the fact that there was a general displeasure in the,
amount of information conveyed by the form of the APL account number lead to our present method.
This method hopefully will he updated to something better, perhaps tied to the addition of
files, to improvements in the /LPL utility, and to broadening the scope of the system commands to
handle multiple entries.

Account Numbers. Instead of assigning numbers according to a 5 digit department code with
the last four digits of a social security number, for a eine digit number, the following scheme
was adopted. The first digit reeiresents status, the next five represent department, andthe last
three are assigned sequentially according to edepartaent. The status digit consists of 1-4 for

undergraduates, 7 for. graduates, 8 for faculty, and 0 for people who we feel need their number
for only one semester. Zu the past everyone was arbitrarily assigned 1 workspace.. Now 0

workspace quota is 'given to people who are using the CAI packages. The 0 numbers are deleted
every semester; the 7 and senior numbers in June. The process for deletion is carried out in the
following manner. A general ;purpose selection program is run against the APL ACCT 0 (under TSO)
produced by the utility to seacchfor 0's or 7's or any particular combination desired. This

program creates a data set with the selected records. This.data set is accessed with another
program that pt1nches.cards with, the appropriate APL system command and user number. These cards
are processed through the 1050..The general purpose selection program can also select records of
users of such combinations as all senior biology majors going to Corning Community College who

have been connected tothe system for over 35 hours. A developing interest in the school is the.
psychology of the time-sharing user. This type of output, along with information obtained from

the I -beam readings, provide much information for on-line collection and analysis of. data in
this realm.

A similar procedure was-asedi'-eket is punching a, deck with the system command ")LOCK under
number," to change over to the new numbering scheme. USers were given one month to- copy old
information into their new number. The old numbers were deleted with a ")DELETE" deck. We have a
")COMTIIUE" deck that can periodically' be read through the 1050 to clean up the CONTINUE.

workspaces that users fail to Trop. (Figure 2).

SUMMART.OF ZRE.DIFFERENT SPhCE SAVING PROCEDURES

104

Before
Aft Jr

Users on System Tracks

GRAND RETRIEVE (MAY)

1748 7399

LOCK-REASSIGN (EPTEMBER)

Workspaces Users on System Tracks

1748 4850

Workspaces

1576

1640 6268 so fu 1476 5395 1694

DELETE Os STATUS NUMBERS (JANUARY, 1972)

1769 7521 2461 1292 6572 2115
14MARCH STATUS (CURRENT)

AFTER DELETING CONTINUES (MAY 9)

1777 9025 3124 1777 6960 2288

Use of I-Beams in Monitoring System UsIge. Using an APL function, MONITOR, requiring aprivileged terminal, information can be obtained on a continuous basis,on specific port usage,specific account number usage (such as histograms of graduate student usage throughout the day),and total numbers of users in a given time interval. From the data collected and from theresults of any desired additional statistical analysis, decisions can be made concerningterminal usage, location suitability, suitability of APL schedule as well as information onamounts of use by different types of users. (Figure 3).
__-

By using I-beams 1-14, which require a privileged terminal, various information about theAPL system performance can be collected on line. (Figure 4).

The I-beams, representing histogram data, return a vector of integers seach' element ofwhich represents a full word of data. Since this information, collected from the time APLstarts running until shutdown, is collected in half-word counters, each I-beam vector has to bedecoded, split into its two half-word components with the following APL function. (Figure 5).
For example 12 - represents the system reaction time from when the user's return isdetected, until his workspace is dispatched. (Figure 6).

Although our experimentation with the I-beams is still rudimentary, attempts are being madeto use this data as input to a simulated time-sharing system, for studying system performanceunder different loads, and for analyzing the behavior of the time- sharing user.

Priority and Quantum. When operating in a multi - programming environment, the effect -depending on factors such as configuration, number of terminals connected, types of jobs - ofAPL on batch jobs and vice versa can be substantial. Various parameters internal to APL can beadjusted. APL ensures that other partitions receive frequent CPU service by alternating its ownpriority between high and low. When APL has a low priority, other partitions will get CPUservice. The normal proportion of time that APL has high priority is controlled by, a functionPRIORITY a,b, which is distributed with the workspace, OPFNS. The priority proportion variesapproximately linearly from - depending on the number of ports in use. There areother factors involved such as the quantum, the time allotted an active workspace in core, thatcan also be set internal to APL by an LPL function.

Psychologically a time-sharing user desires at most a 3-5 second response time; (dependingon the complexity of the request) but batch users object to at times 400% degradation in theirjobs caused by APL. Hence some compromises have to be made. See Figure 7 for comparison datawhere the priority and quantum have been varied.

Sfcurit/ of the APL 412tem. Theft of numbers of unauthorized users who search wastepaperbaskets, unauthorized copies of OPFNS, disastrous experimentation by inquisitive but well-meaning users who desire to probe the:mysterious inner workings of APL, and mischievousness makesecurity an annoying but necessary task. As far as the. Coaputer Center has determined no simpleprocedures or solutions are in evidence in the current IBM APL release. Various attempts atdevising elaborate check functions for privileging nauthorizedl, users at terminals outside theconfines of the Computer Center have always been cracked.

Beyond these basic considerations there are the very real problems of offering security ofcreativity to those who desire it. With the possibility of patents for original algorithms anduse of functions for trading with other installations or for publishing, workspace and function

105

3
7
.
5

35
.0

32
.5

30
.0

27
.5

25
.0

22
.5

1 4

.0
.

0

2
0
.
0

1
5
2
0

1
5
4
0

1
5
6
0

1
5
8
0

1
6
0
0

N
U
M
B
E
R

O
F

T
E
R
M
I
N
A
L
S

C
O
N
N
E
C
T
E
D

V
S

T
I
M
E

O
F

D
A
Y

F
i
g
u
r
e

3
-
a

N
U
M
B
E
R

O
F

H
O
U
R
S

C
O
N
N
E
C
T

T
I
M
E

V
S
.

P
O
R
T

N
U
M
B
E
R
.

0
.
7
5
1

0

I
0
0
0

I I
0
0

0

1
0
0
0

,
,

0
.
5
0
1

N
-
,
0
0
0

N
.

I
0
N
O N

N

I
0

0

I
;
0
0
0

I
0
0

0

,

0
.
2
5
1

0
0

0

0

I
0
0

0

0

I
0
0
0

0

I
0
0

0
0
0

I
0
0
0

0
0

0
,
0
0
1
0
0
-
1
-
-
-
-
1
-
0
0
1
-
-
M
-
-
-
-
1
-
0
-
1
-

-
-

-
-
1
-
0
-
1
0
-
-
-
1
-
-
-
-
1

0
1
0

2
0

3
0

4
0

:
-
.
0

D
O

0
0

0

D
O

D
O

0
d
O

0

O
D 0

0

C
D

D
O

D

0
0

0

O
D

0
0

0
0

0
0

M

D
E
0
0
0

0

0
0

D

O
D

D
D
D

D

O
D

0

0
0
0
0
0

D
O

O
D

D

D
D

0
0
0

0
0

O
D
D

D

0

0

D
O

0

D

D
O
0

0
0
0
0

0

0

0
D

0
0

0
0

0
0
0

0
0
0

0
x
0

0

O
D

0
0
0

0
0
0

0
0

0
0

D
O
D
D

0
0
0
0

D
D

0
0

D

D
D
D

0
0

I
%

0
0

0
0
0
0

0
L
0

0

0
0

D
O

0

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

o
n
o

D
O
D

0
D

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
0
0
0
E
0
0

D
D

0

Q

0
0

O
D

0
0
0
0
0
0
0
0
0
0

O
D
D

0
=
0

.
F
i
g
u
r
e

3
-
b

p

ACCOUNT NUMBER: 41001

201

1

1

1

1 Poo 0
151 0

1 0 0

1

Figure 3-c

PLOT' OP ACOOUT L1 ?! '.7p' 7S. Cm P.IY
- TOTAL I:W..7PP (1;

* - !1UPPPP Orr mnr!, Lyri7
O OP 7,1.7P''IPE

0 0 0015

1

51

1

1

1

1* * * * * * * * * *

1530 1540 1550 1560 1570 1580 1590 1600

107

Figure 3-d,

VMONITOREMV
DELAYS MONITOR UNTIL;P;A;CO

[1] TIMER+TERMNUM+t0
[2] UNTIL+ 72 60 12tUN2'IL
[3] 'INPUT ACCOUNT NUMBERS YOU WISH MONITORED OPE AT A TIME INPUT STOP
[4] NUM+ 0 5 p0
15] L2:4-(APSTOP'=41.P.+M)/EON
[6] NUM4-NUM,C1] 1 5 p S +P

[7] +L2
[S1 P(OP:Cr ;:+52p0

'TM). 0 3)p0
DELAYA

[11] TIME 24 60 12t 72 60 60 60 1120
112] TERMNUM+TERMNUM,123
[13] TIMER+TIMER,100x+/(72 60 TTIME)i. 1 60

[14] CONNECT+CONNECT+((152)E0U)
[15] A +((1 +pNUM), 1 3)pC0+0
[16] INL:A[CO;1;]+.(PP),(+/P<21),+/215P+ACCT NUM[C04-00+1;]
[17] (C0<1 tpNUM)/INL
[18] MAT+MAT,[2] A
[19] (TIME<UNTIL)/LOOP
[20] ABORT:'NUMBER OF TERMINALS CONNECTED VS. TIME OF DAY.'

121] 30 90 PLOTT TERMYUM VS TIMER
[22] 10 1 p'

CONNECT+(CONNECTxDELAYA)+3600
[24] 'NUMBER OF HOURS CONNECT TIME VS. PORT NUMBER.
[25] PORT +t52
[26] 30. 90 PLOTT "CONNECT VS PORT
[27] C04-0

[28] 10 1 p'

129] ' PLOTS OF ACCOUNT NUMBERS VS. TIME OF DAY'

[30] ' ';PC[1];' - TOTAL NUMBER ON'
[31] ";PC[2];' NUMBER ON PHONE LINE'
132] ' ';PCC3];' - NUMBER ON HARDWIRE'
[33] 3 1 p'
[34] LP:' ACCOUNT NUMBER: ';(' '11TM[CO;])/NUM[CO.4.-00+1;]
[35] 4-(0$1-/+/+/MATECO;;])/(126)+2
136] -0-((I26)+2).0447'NONE OF THIS ACCOUNT NUMBER SIGNED ON'

137] 30,90 PLOTT MAT[CO;;] VS TIMER
[38] '

[39] -..(

V

C0c1tpNUM)/LP

VACCT[O]V
V R+ACCT N;OR;X

[1]
-q(AP0I=N),1=pN.+("N)/N)/ZER,STAT,OpOR.+61 0 0

[2] R+1+L(7I108)4-1000
[3] R4-(10*5)xR-LR+R+10*5
[4] R.44/i1-10*5-pN
[5] 4-ZER-2
[6] STAT:R4-1+L(71108)4-10*8
[7] R4-(XER÷(R=101'0123456789'01)/ALL)/P-ON
[8] ZER+1
[9] ZER:R4-(((1+71108)>1000000)A(14,71108)<100000000)/ALL
[10] OR4-6I0.0R

V

Note: Good for 52 ports. Additional functions used are found
in the Operator's workspace.

108

I-Beam
Number Unit

No. Of
EleMents

Figure

Max.
Value

0 13

1 1 perc.at 100 100

2 1/60 sec. 240 4 sec.

3 1 second 120 2 min.

4 1/60 sec. 120 2 sec.

5 (a transfer vector of absolute

6 1 minute 120 2 hours

7 1 second 240 24 sec.

8 1 byte 148 148 bytes

9 1 second 120 2 minutes

10 r-1 byte 148 148'bytes

13 250 bytes 200 50000 bytes

14 250 bytes 200 50000 bytes

4

Significance

. Count of special disk oper-
.

ations. The elements of the
decoded vector give the number
of times each of the following
system commands has been used:
DROP, SAVE, LOAD, COPY, ADD,
LIB, OFF, DELETE, LOCK, UNLOCK.

The percent of elapsed time
given to service an input.

The system reaction time from
when the user's return is
detected, until his workspace
is dispatched.

User keying time, from the
time the keyboard unlocks,
until the user hits return.

Compute time per
.

input.

addresses)

Figure 5

Connect time for each session.

CPU time for each session.

Raw input character count,
including backspaces, etc.

Input arrival time (from one
carrier return to the next).

:.nternal output line length.

Garbage in workspace at time
of swap write.

Active size of workspace at
time of swap write.

Decoding the I-Beams

The data in core storage is read-out by a histogram 1-beam
in increments of full words. To decode the I-beams the following
APL function can be used.

VSPLITEMV
V R4-SPLIT I

Li] R4-(1t/)0 65536 65536 Ti.1./
V

109

AFigure 6

IDEAM
Tills WORKSPACE UAS COLLECTED A CRAM, TOTAL OF I 'BEAM flEADIUCO.
TREY ARE FOR TUC FOLLOWIDC DATES ADD TIMES:
01) 10:49:19A/: OU 02/14/72
WUICil DATE AU() Time DO YOU WISH? (SPECIFY DY NUNDEM

WRICU ibiAM (0-1u EXCEPT 5) DO YOU VADT7
Li;

\ 2

\ DO. YOU .WAVT TUE UUCODED 11/rAm DISPLAYED ?

\ Li: -
.

YES
371202 31064072 1310742 4456558_10158272 16318793- 25559486-- 27984253 21627201 17694924 12848163 6226010

3987752 3538989 2621478 2818094 1966109 1245207 1441812 1507343 1245297 1048589 458762 450765
655372 655367 262148 720903, 458758 458756 458757 262148 327680 65840 262146 65540 65541 1065:0
131074 196611 176611 1 65530 65540 65530 131076 65540 252145 196608 262144 1 65537 0 05536
132072 65536 176609 196612 65538 65539 65536 65537 3 4 0 196608 0 0 0 2 1 0 3 65536
2 65536 1 196600 65537 2 131072 65536 G5536 131073 65536 1 65536 2 65536 131072 0 0
0 131072 2 0 65536 65536 65536 65536 65537 0 65537 1 0 1 65538 1 0 2 2 1 0 0 05530
131072 0 0 0 0 131072 184

:X,:ODED VICTOR 147:474 8 20 22 68 110. 255 292 249 329 390 446 427 382 330 321 270 204 IOC
107 95 90 61 56 54 45 40 38 43 46 30 29 19 23 22 20 23 15 19 13 15 13 7 10 7
13 10 ' 12 10 7 4 4 11 7 7 G 7 4 7 5 445 8 1 44214 1 5 3 2 2 2 3 1
3 3 0 I 1 2 1 4 1 2 2 4 1 4 4 1 3 0 4 0 0 1 1 1 0 0 1 . 2 0 1 0 3 1

3 4 1 7 1 3 1 0 1 1 0 3 0 4 0 0 0 0 0 0 0 2 0 1 0201 OG03102 1001 301102 2 0 10 1 0 211 0 011 0 0 2 1 0 2000
. 0 0 0 0 2 0 0 2 001 0 3 0 1010 1 1 0 0 1 1 0 I 0 001 1 201
'L 0 0 2 0 2 0 1 0 0 0 1 0 _2 0 0 0 0 0 0 0 0 0 2 0 0 184

A PLOT OF TUTS IDEAM ZS 'AC FOLLUo/S:
YjLCUM1511 01' OVERFLOWS WAS: 184
:IIHTOTAL OCE-CcALC READIUCC WERE: 474

500

400

300

200

12: The system reaction time from
when the user's return is detected,
until his workspace is dispatched.

First 100 elements of
the decoded 12.

100

ti

"Nhro

0 50 100

Units of 1/60 of a -second

If

3

a

200

110

160

1410

/ lo
/00

g0

60

o.0

Fiyvre 7

BATCW RUN

WIN TIME (iii/iv)
.ter- C Pei booix/

34#c4 Jab

TERmiwiuS(cpa
.ro &P)

TIME

s ',own

QUA N

X CiVAIVIA.::,08

CalVa.1.15/ON VAR wit/6
awfmr.; Foe* .40Z To .1
Hof S h0 OCCEC I 04/

5.4 rew Row rmfe

0 .1 . .3 S.- .6 .7 9 .1
PRIORITY

A P Rem 7/.;/e VS Priord,
Consia4# looped Cpu

Tab 84 kl?

VA RY COWIN TA

FROM
1 40.3 rk, of h///e

0 .2 6. .7 .6' .1

PRIOR/7-y

security and some form of credit has to be given- to programmers and researchers while
encouraging APL users to share their work with the world.

Another security problem of a different nature is the disappearance of the contents of
workspaces accidentally or because of internal damage. If users report their mishap to the
Center within the period of a cycle of dump tapes (3 weeks) their workspace.can usually be
recovered. We do not publicize this capability.

Occasionally workspaces cone out DAMAGED (IMPEACHED) in the twice weekly dump-reStore
procedure meaning that they are questionable, but are dumped and restored. We try to eliqinate
the qUestionability by either copying them over or restoring from a backup tape. Whether this
is necessary or not, we do. not know. For example, we hay! 9tsi= ,A that the upper and
lowercase idle character cause an impeached workspace, bUt use of tau functions containing these
characters is in no way hampered.

ToJourdismay in March, because of later to bediscovered problems in formatting the disks,
we had several workspaces DAMAGED and REJ=TED as opposed to being DAMAGED and IMPEACHED. The
contents of these workspaces are gone. But their name remains in the directory. If a user
attempts to save ipto these workspaces, EDL-abends. It is necessary to bring APL up again and at
all possible speed.)DROP these workspaCesffrou the directories.

Education. There is no untergrademte Computer. science program at SONY-Binghamton, hence
there are no uProgrammingi, courses: There are graduatecourSes (in APL b PL/1) in the School of
Advanced Technology which undergraduates can take,Hby-petition, for credit. The vast majority of
students, staff' and faculty look horthe CoMpUter: Center for instruction. We have produced a
series of video instruction (9 tapes, 45 minutes each) which introduce, students to APL/360. The
tapes are run, with a knowledgeable renter employee in-attendance, twice a semester - usually
twice a day (noon and 6:00 p.m.). From two to threehundred:,people per year are introduced to
APL. in this magnet. The Center employee isnecessaryprinarily to provide the encouragement and
motivation for all students to get on the terminal as soon as possible and not just:take the
video course fUr theory.. Diming each summer a special clissfor.facUlty only is held, and is
well attended. There is a 50'. page supplementary manual available which is used to follow the
video tapes -_primarily forthe PUrpose of discouraging note-taking during the tapes._ Copies are
available.

In additipn to the video, classes, which ire: well received, we offer live classes for
groups, such as individual classes, zi a demand basis.. There is also a series of workspaceS in.
APL which instruct a user in the A syntamin a ".C31" mode. We offer personalized instruction
to users who-read the User's Manual oc ourtnick Gmbleen their: own. The Quick Guide is a brief
introduction to. APL /360 with notes conCerming specifically our installation, and sample
executions of seine of our public libraries., 'This guide was Written to hand to people who stop in
the day/ after the APL classes: emd and ask when I'll be teaching an APL class. Copies are
available on request.

Assistance to Users

In providing assistance to faculty asafind various categories of needed support: (1) those
who are sophisticated programmers, have good. ideas for:applications:in their courses, and merely
request account members for their students,: eservation of terminals, and perhaps demonstrations
of APL in group sessions: (2) those with good plans for .applications, but lack ideas for
implementimg tio; (3) and those whose onlyattribUteis enthusiasm. The last two categories of
people are best handled on a one- to-one basis, trying to adapt their needs to techniques and
existing programs. With a sufficient member of eiamples of problem-solving J.echniques,
simulation and tutorial progress they can find something consonant with their interests that
will provide the suppleuent or embellishment to -their :course= that they sought.

Students

Students who use the APL system dos Also for- various reasons: (1) course requirements,
(2) their own research or other class work,. (3) general unguided curiosity, and mass productions
of SNOOPY posters. Hanover, it is true the most studentsbecOne, for various reasons, such more
sophisticated and elegant APL programmers Chan faculty and that a great deal of course-related
API. work can be traced to student initiatiomby snggestionuir actual development.

Computer Center Assistance,

In moat cases,- APL project have themnost success *nen they are tailored to a specific
professor Apd Class. Me have, homelier, develOpet some general. purpose CAI techniques that are
applicable : to various circuastanf. We Ape currently evalutimg the Author Tutorial System

112

available through IBM. The object is to allo professors, with a limited knowledge of APL, to
construct tutorials and drills. Students Can respond to questions in free form senteA:es.
Statistics of student perforaance can be obtained.

In terms of particular applications, sosse ideas have required a great deal of effort on our
part and on the part of the eilginater. The first step is to determine whether or not the
project is "worthy" of implementation.

The determination of the "worthiness" of a given application is not well-defined. Probable
Use, time, and limited personnel constitute the primary Constraints. frequently goes beyond
differentiating what is or is not a good APL application. What we may conceive of as a "bad"
application can, in some instances, serve a definite need. Many applications such as the
CHEMLAB, APL laboratory monitor, are not cost effective yet, but represent excellent prototypes.

Certain modificaitons of ideas and procedures invariably must occur'to make them suitable
for LPL inpleaentation. Interestingly enough, because of the ability of APL in simulating
experiments to their very limit, many of the planned Freshman Physics lab experiaents were
modified - mainly because the original experleental procedures, taken to the limit, produced
less acccurate results than the modified procedures on APL. The necessary algorithms must then
be developed, and then coded. Program editing, a continual dialogue between programmer and
originator, is an interactive process that can be verytime consuming. Once the programaing is
coapletded, arrangements are made to allow. Students easy access to the programs. Student
reaction is an,iiportant ingredient in the determination of modifications and embellishments.

Documentation

It is axiomatic in user service-oriented organizations that effective publicity is an all -
.:mportant ingredient for success. We publish te colkitsr Center Newsletter four or five times a
year. (If you'd like to be on our mailing list. we hate applications with us.) APL news gets the
most coverage- We also publish a list of public library workspaces and their contents; we also
have copies here for distribution. We also maintain standardized "on-line" documentaiton.

A large :number of our APL users are interested in statistical functions. We have two
statistical packages: STATPAK and a package trot Nev Peitz. Several additions have been written
by SUN!-singhawton people. Unfortunately, a large portion of potential users know statistics but
cannot understand the descriptions that use a large amount of APL terainology. Our student
proctors know APL, but not statistics. We have developed a descriptive workspace STATHELP which
gives even additional help to bridge this gaP"

We have impleaented a MAINITHELP that describes some things that can be done With matrices
and APL and points to other matrix workspace5 in the public libraries. A FOHMATHELP workspace
contains functions and'help to format data, functions and help in writing CAI and directions on
use of the various plot functions that have accumulated in our libraries.

Future Efforts

Some areas of future emphasis, in addition to those mentioned above, include more
concentration in Psychology, the School of Oanagenent. the School of Nursing, and applied
aathematics in the School of Advanced Technology (SAT).

Since we do not currently have a file system with our APL system we are restrained by the
36K WS limitation - especially for statistical appliCations, long simulations, and CAI programs
requiring the logging of student statistics. We feel a distinct need to provide more., information
to users on good programming habits and on time/space tradeoffs. A programmer in SAT, Grant
Sullivan, has done some investigation in Ptogrammiug techniques to save space and tine/space
tradeoffs. His work provides some help and guidance in geed programming techniques in the above

Of the 1750 users on our system a relatively small proportion exhibit exceptional
programming skills. It is a testimony to the efficiency of the APL/360 implaementation that less
than good programming does not necessarily pettish the user. There are-users who are very clever
with the APL syntax but do not use it well ill everyday practice. There are, of course, users
who, no natter what the amount of effort, will never be good programmers. It is probalby
impossible and certainly impractical to impoOe restrictions on the user community to attempt to
enforce programming standards._; ie would, believer, like to increase cOmputer-related skills in
all areas.

Sbae of this iaprovement comes with knowledge of basic computer concepts and numerical
methods. Most of our users do not have the tine to dedicate several courses to achieve this type

113

of knowledge. So a ,u the poosition of ha',,ag a consider ways of capsulizing APL and
statistics, advanced APL, numerical methods useful in coding APL problems, etc.

Finally, there is the task advising users what system to use. Initially we did not otter
any choice of conversational terminal facilities. However, we currently run TSO and anticipate

situations, such as taking the determinant of 50 x 50 matrices, where our advice will be to
channel the application to the most applicable terminal system.

The ultimate goals are to transport as many useful programs to our system as we can, to
provide a-large base of available routines, to encourage the development of curriculum materials

in our consortium, to adequately publicize that which is available, and to provide the

consultation and assistance necessary to eiliminate or reduce impediments to general

development. We feel we are. in an embryonic stage now, but look forward to increased service to
or users. We would appreciate sharing experiences and programs with other installations. There

is much to be gained by cooperative efforts.

114

EVERY LITTLE BIT HURTS:

Saving Money by Saving Space in APL

Richard Alercia, State University of New York
Robert Swiatek, Binghamton Public Schools

Gerlad M. Weinberg, State University of New York
Binghamton, New York

tr9

The State University of New York at Binghamton has been a user of IBM's APL system since
the earliest releases, and currently runs about 50 ports on a model 155. At the time of our
study, 1400 user numbers accounted for approximately 5000 tracks of 2314 space. A persistent
trouble in our system seems to be one of inadequate space on disk files. At the beginning of a
semester there is quite a bit of space, but as the weeks pass on, the disks fill monotonically
until users begin to feel the effects. Each passing year seemed to see the addition of another
2314 to the system, in order to solve the previous year's problems, and each year the system
fills up. Other installations have told us of the same difficulty, so we decided to investigate
the problem.

We conducted our investigation during the Fall. of 1971, through a survey and through
detailed investigation of a random sample of indivldual users' workspaces. Our sample generated
295 user numbers, two of which were no longer in use and 48 of which were locked. We respected
all locked numbers and workspacesof which there were only seven under unlocked numbers.
Altogether, then, WP investigated 245 numbers. We realize that the profile of locked numbers may
be different from that of the unlocked, but we do not know how to adjust for the difference. We
conjecture that the average locked user is a larger, more sophisticated user, and since they
seem to waste more space among the unlocked, we imagine that our esimates are consequently on
the conservative side.

In parallel with the study of workspaces, we distributed a questionnaire to 35 persons,
most of whom were in the School of Advanced Technology and so might be expected to be more
knowledgeable about APL than the average user at Binghamton. The purpose of the questionnaire
was to estimate what effect knowledge of APL has on space usage, and what possibilities there
might be for space savings. We also carried on a number of informal discussions with users, and
observed users at work.

State Indicators

One of the first sources of wasted space is the space used for suspended functions. If a
function is suspended during execution and the state indicator is not cleared, a certain number
of bytes gets wasted unless execution is resumed Of the 245 users we checked, 48 had some such
wasted space. The number of bytes ranged from 68 to 20, 504 per 32K workspace. The total for the
sample was 75,994, or about 3DOK bytes per 1000 users. For our whole installation, if this rate
is representative, 420K bytes. are consumed in this manner, or about 70 tracks.

Our survey showed that at least one-third of the respondents did not know the meaning of
the SI symbol, and recall that this survey was among the most Inowledgeable group of API, users
on campus. But even people who knew what SI meant had wasted bytes in their workspaces and had
bytes consumed by SIs, even damaged SIs. Indeed, the more "sophisticated" the user, the more
space he wasted in this way.

Duplicate Workspaces

We found a number of people to have two workspaces which were precisely the same, while
others had very similar workspaces. We also found two or more. users who had identical
worskpaces. The ,main reason for such duplication is the presence of a CONTINUE workspace, which
is presumably around in case of, or because of, system difficulties..

In our sample, we found 92 CONTINUE workspaces for 245 users. Erasing only the ones which
were exact duplicates of other workspaces would have reduced the 640 tracks used by these 245
users, to 509 tracks. Dropping all CONTINUE WorkspacekwoUld have reduced the total space to 363
tracks. This.saving comes to approximately 1130 tracks''per 1000 users, or one'2314 for between
3,000 :and. 14;v3p users.

115

Handi..ing of libraries

Of major importance is the space wasted by copies of functions which can be found in some
other workspace. These could be in either the APL public library or some private library. While
it is difficult in the present APL implementation to say precisely, our best estimate of the
number of public library functions per workspace is two. The average size of these functions is

approximately 2000 bytes, or 4000 bytes per workspace. Over the 1657 non-CONTINUE workspaces in
our system, this represents abaut 6,600,000 bytes, or more tham'20 percent of the total tracks.
If CONTINUE workspaces are included, this duplication of public functions accounts for over one-
quarter of the space consumed in our system.

Space consumed by -,non- public, or semi-public, functions is difficult to estiMate, but we
found several sets of functions which were duplicated quite frequently. lost of these seem to

have originated in some teacher's workspace. A typical situation is for an instructor to create
functions for his class to use--functions hich each member of the class saves in his own
workspace. One case, for instance, involved two tracks, so if there were 20 people in the class,
40 unnecessary tracks would have been consumed.

Miscellaneous Wastage

Disk space als3 gets wasted in numerous small ways which will probably be inaccessible to
any systems solution. A person who knows, the system well potentially has good control over his
space utilization. Given an incentive to save space, he will be able to do so. On the other
hand, a person using the systei with little knowledge will most likely be wasting space, even if
he has reason not to Our survey indicated that many users were not sufficiently aware of the
workings of the system to save space even if they had wanted to.

But knowledgeable users can also be space wasters. Though they know hoe, they are simply
tom lazy to clean up their workspaces - especially since our installation does nto charge for

-disk residence. We ran across one person who had seven workspaces, five of which were the same.
This totals 166,000 wasted bytes, or, roughly 24 tracks.

Some workspaces had functions which were obviously to be used only once, yet they were
saved. Others had two or more similar copies of a function, one of which, at least, contained a

syntactic error and thus couldn't possibly run. It is probably of no value to save a function
which won't execute, especially if the number hadn't been used for six months.

Though we found no trace of it, there was a well-organized APL baseball league going around
campus. The grapevine tells us that these workspaces are carefully locked. Ue did, however, find
some unlocked workspaces with other games. One was a basketball workspace featuring the New York
Knicks. Whether.or not these functions had value for teaching or learning, we leave to others to
decide.

We encountered one copy of APL NEWS OF.THE WEEK from 1969. Another individual had a single
function in his workspace which printed five other APL numbers. In additon, we found one
unlocked MISS APL - using 7000 bytes - and three unlocked SNOOPIES.

Recommendations

There are a number of ratner clear steps which could be taken by the fBM APL implementation
to cut down on the amount of wasted space on disks. We shall consider these. '-recommendations' in

turn, indicating which problem they ,address and how much saving they might be expected to
realize in an installation such as ours which might be reasonably typical for a University
environment.

State Indicator Vector

For 99.9 percent of the isers 99'..9 percent of the time, saving the state indicators of the
prmgram after an attention seems a waste of space, since few programmers know about their
existence, fewer know their meaning, and almost nobody uses them to resume execution.
Nevertheless, the advantages of saving the state can be maintained without the wastage of space
if a few simple changes are made.

The system could prevent automatic storing of the state when)SAVE is executed. The state
would only be saved when 'a-Special version of)SAVE is executed - such as

)SAVE WSNAIE SI

116

This approach leaves only system shutdowns or crashes to contend with. In these cases, one
may be interrupted unintentionally, so the state could be saved - but erased autdmatically after
the first)LOAD oc)COPY, and in any case after, say, one week. If the programmer hasn't loaded
the interrupted space after one week, it can hardly be an urgent matter.

Estimated savings from'this approach are 50 tracks/1000 users.

CONTINUE Workspaces

We recommend, at a minimum, that CONTINUE workspaces not be available except as an
emergency storing place in case of sytem crash or shutdown. Many users employ CONTINUE* to gainan affective increase in workspace quota, but they can be satisfied by whatever regular
assignment procedure exists. In any case, it is poor practice to save in CONTINUE, for a sytem
crash while working on something else will wipe out that version of CONTINUE.

In the case of emergency saving, CONTINUE workspaces should be retained for a maximum time
of, say, one week and then automatically dropped from the system. Moreover, when a user signson, he should be given a message that he has a CONTINUE workspace, and asked to use it right
then or loSe it. Unfortunately, this strategy is not sufficient, for the great majority of
CONTINUE workspaces are simply sitting behind numbers which won't be used for months. Therefore,
a time limit must also be set on inactive numbers.

In our system, implementing this policy would save 1130 tracks/1000 users. After our study,
DUr Computing Center institnted the policy of periodically erasing all CONTINUE workspaces.
There seem to have been no complaints, and the savings are commensurate with our estimates, thus
proving an empirical demonstration that this approach works and is not unbearable to the users.

Handling of Libraries

Probably the greatest wastage of space in our APL system is brought about by duplicates
upon duplicates of certain library functions stored under number after number, and sometimesmany times under the same user number. When a workspace containing a locked function originally
loaded from a public library is saved, only the name of the function need be saved. Then, when a
)LOAD or)COPY is executed, the copy is brought anew from the public library. Currently, we
estimate that this operation would save 20-25 percent of the disk space in our system, but thisspace saving would tend to grow as the library grows and the users stay longer with the system,
so that their knowledge of the library grows.

This operation is almost transparent to,-the user, and would be entirely so if it were not
for the possibility of new versions of library functions being issued from time ,to time. If thelibrary functions are functionally equivalent, but are improved in space and/or time, this
system has the further advantage of giving all users the benefit of the latest improved' library
routines. Only if functional changes are made could a user get into difficulty with a program
not working which once worked. Ifi any case, such troubles can be prevented by issuing the new
version with a new name - which is probably best if the function has changed.

Can the User Do It?

An alternative solution to this same set of problems is to modify user behavior. Well-
trained and conscientious users would, before saving any workspace, clear the 'SI and generallyclean up garbage in the workspace. They would certainly not store copies Of library functions,
but would erase them before saving and copy them at their next work session. When loading aftera crash they would carefully drop CONTINUE.

Were all our users lite this, our APL system would be a neat and trim little operation.
From our survey, however, we cannot find any evidence that any users are like this. While theymay spend hours trimming a few bytes so as to make a job run in one workspace, they will not
spend a few seconds copying library functions anew with each load. On the contrary, those userswho do know enough to save space for the system will readily do the opposite if it'is to their
advantage.

For instance, at the peak of last year's space crisis, users began to experience NO SPACE
messages when they tried to save their active workspace. In order to avoid losing any:-Work,
knowledgeable programmers filled 'each workspace with long vectors so as to ensure a full five
tracks would be occupied. This prevented NO SPACE - for them - and they could shorten the dummyvector as needed.

it the other extreme, we find those users who might be happy to cooperate with the system,
in saving space, but don't even know what "space" is.

117

O

Conclusions

No doubt an APL installation with one hundred percent knowledgeable and conscientious users
could save much more disk space than the system changes recommended in this paper. No doubt,

too, _there will never be such an installation. Given the realities of user ignorance and
selfishness for the large majority, significant dead storage savings Rust come from system

changes - changes which.are transparent to the user, or at worst within the override control of

the knowledgeable programmer_

When APL was a young system, users could afford to put up with such glaring inefficiencies
in storage management. In the first place, the number of,users is always smaller when the system

is first installed; in ;Ale second, the space per user grows as the number of users grows, so

that the total space grows Easter than linearly with time. Installations cannot gb on

indefinitely devoting additional disk packs to APL with each passing year- Charges for space can
be expected to provide feedback to the users which will ultimately stabilize space per user, but

.once charges for space are instituted, users themselves will begin to edemand the kind of
automatic space controls we have suggested.

In any case, these three simple systems changes we propose would reduce the configuration
needed in our installation by one 2314 in three. Installations with larger numbers of users

could expect proportionately larger savings in disk rental - rental which is effectively rental

on an inefficient systems design.

ACKNOWLEDGEMENT

We should like to thank all the members of our Computing Center staff who gave us support
and encouragement, but especially.Ms. Anne Kellerman. We would also like to thank our 245

anonymous participants who (unknowingly) permitted us to exaaine their deepest secrets.

118

,t
SECURITY OF APL APPLICATIONS PACKAGES

Paul Penfield, Jr.
17 Bradford Road, w'

Weston, Massachusetts 02193

By the term "applications package" is meant a set of interacting APL functions and
variables that 4 user calls, along with certain "background" functions and data that are onlycalled indirectly. If there is a proprietary interest in the package, then it is necessary to
devise techniques to assure the security of the package.

An interpreted language like APL might be thought to pose severe security problems, since
(unlike a compiled language such as FORTRAN) the source code is always somewhere nearby.
However, with proper design, reasonable security (consistent with the value of the goods
protected) can be achieved. This paper deals with security for packages installed nOth on
private computers, and on commercial time-sharing systems, with the emphasis on the latter.

Why Security

The purpose of a security system is to make it more difficult (i.e., more expensive) for a
potential thief to get at the package without authorization, than it would be for him to do so
legally.

More specifically, there are four general ayes of acts, that a security system should protect
against. First is display of the functions (and possibly the data), for example by someone
trying to discover the coding. Second is unauthorized propagation of the package, for example by
means of DWI's- Third is modification of the package, and fourth is unauthorized use.

There are four classes of people that the security system is directed to. First are
unauthorized users. second are authorized users, or users that are authorized for only certain
types of use- Third is the operations staff of the computer, and fourth are computer system
programmers. There is no effective way to prevent a system programmer, if he wishes, from
violating the security of the package. I assume that any system programmer knows how to access
the symbol table, how to 'unlock functions and how to beat the file system. The security of a
package relies on the fact that such people are generally not dishonest, and therefore try to
"play the game" fairly, and will not go out of their way to steal the package. It is therefore
sufficient to design the system so that they do not stumble upon any secrets by accident. As for
the operations staff, this is a larger set of people and it is probably wise not to tempt them.
What is necessary is to design the package in such a way that nontrivial work is required for
them to "beat', it. As for the end users, a few of them will regard it as a challenge to try to
beat a security system, and therefore the security aspects must be designed as though all end
users were malicious, scheming, knowledgeable APL programmers intent on stealing and/or
destroying the Package.

43

How Secure

No security system is foolproof./Fortunately, however, foolproof behavior is not required.
The only requirement is that tne cost/of beating the system_be, and appear to be, greater than
the worth of the goods it protects./

In the case of an applications package, the 4:t.IIss;:;stwo separate upper bounds although if
there is a data bank, the value of the data mightibe higher. Any package will by necessity have
a user's manual which defines the interface between the user and the package. A competent APL
programmer who is also knowledge'able in the particular discipline can, in principle, duplicate
any package merely from the user's manual -.One upper bound to the worth of a package is the cost
of doing just that. The other upper bound is the price charged for the sale, lease, or use of
the package.

Protecting AgaiRst Unauthorizei Display

Unauthorized display of functions can of course be prevented by simply locking them. In
some cases locking the workspace may also be a slight help, but in typical packages the
workspaces' in question /are supposed to be available to users and it would not be appropriate to
lock them.

Soave installations have provisions for rendering functions and variable names unprintable.
I have never been told, but I assume that this is done by changing the name in the symbol table
to blanks, or to a "name" including a nonalphanumeric symbol or starting with a blank. This of

119

course should only be done to names that are not part of the users vocabulary (i.e., only local.

variables and background functions and data) but is effective in preventing the display of some

variables, especially local variables during program suspension.

Some installations have the ability to make a variable unprintable by changing its type, but if
this can be done by the user it can also be undone and therefore is not an effective security

measure.

Protecting Against Unauthorized Propagation

One way of propagating.a package, of course, would be to display the functions and data and
then manually re-enter them elsewhere. There are other methods, however. The most.obvious is to

request a selective dump of a workspace and then carry the magnetic tape to another
installation. Some installations have conventions by which certain comments in a locked function

make it un-dumpable, but aside from these there is little that a package designer can do to
prevent a DUMP.

There is much that ha can do, however, to make such propagation fruitless. Most
installations have special individual features; the common ones are file systems, and fast

formatters. If the package is individually tailored to use these features, it will not run on

other systems.

There is some danger of unauthorized propagation by actual reproduction of the tape which
originally carries the package to the installation. There are a couple of easy things that can

be done to make this ineffective. First, there-is the "you add the eggs" approach whereby a
simple but necessary variable is omitted, and is then inserted manually after the package has

been loaded. The other is to send the tape with one or more functions unlocked and in error.
Than, since only you know what corrections are necessary, only you can make theM; and the tape

without the corrections is worthless.

Protecting Against Unauthorized Modification

With a package containing many functions and variables there is some danger of wrong
results if some of the functions are replaced or.missing. To protect against this, and therefore
to preserve the integrity of tae package, there is little that the package designer can do. What
is logically required is the concept of a "locked group" which during).COPY,)PCOPY,)GROUP, and
)ERASE commands, would always stay together. Another useful feature of such an arrangement would
be identification of the locked group with the user number of the person who locked it, and

therefore "owns" it. The rule then would be that only the owner could)SAVE a locked group; if
anyone else tried to)SAVE a workspace containing the group, it would be erased befOre the save

is executed.

However, this is just a suggestion. it is not implemented, and usually there is nothing a
package designer can clo to prevent modification of his package (although one installation has a

similar arrangement applying to workspaces).

Protecting Against Unauthorized Use

Protecting against unauthorized use requires a validation system of some sort. Such a
system need not be absolite, in the sense that it need not protect all functions in the package.

It is sufficient to protect certain "critical" functions. This approach reduces the number of

validation tests, and also eliminates many lines of code.

The cost of repeated validations can be eliminated by somehow "conditioning" the workspaces
to allow subsequent Buse without another validation. This can be most easily done by setting a

global variable, called the "conditionAng variable," to match the results of a test calculation.
If the conditioning variable is OK, computation proceeds; if it is not, the validation routine

is called and either the user is validated and proceeds (without even realizing he was

validated), or else the calculations are aborted. For'this arrangement to be effective, the

conditioning variables must not Aave an obvious value. The formula for calculating it must be
secret, and new versions of tha package should incorporate new formulas with new arbitrary

constants.

A conditioned workspace must not appear conditioned under too general circumstances. For
example, it would be 'bad if an authorized user could condition the workspace,)SAVE. it, And ,then.

have an unauthorized user)EGAD it and proceed. Similarly, if it is ever desired to remove
authorization from a user, the conditioning must be set so as to .expire automatically. These

conditions can be assured if the value-of-the_conditioning variable depends upon 1213 and 125.

120

A separate function to do the validation process should be avoided, since a user can
substitute his own version. A better plan is to incorporate the validation code right in one ofthe critical functions of the package. If for some reason it is necessary to use a separatevalidation function, it should be written so that it works properly only within the environmentprovided by the functions that call it. This may be done by referencing local variables iu the
calling functions, or by references to x27.

Whether or not a separate validation function is used, a user can interrupt within thefunction and then branch to any line number. For this reason it may be vise to incorporate anilg check to foil such attempts.

If possible, the conditioning variable and the validation routine name shOuld beunpri ntable.

If the list of authorized users is kept workspace, it takes mp space, so perhaps the
validating algorithm should reset it to a scalz:: On the other hand, il:there is a file system,the list of valid users can be stored in a read -only file, with the miner numbers coded in someway. The file password (if one-is used) shoulcLte secret, and should nom: appear as part of avariable which can be dispiaved during program suspension. The list of: authorized users shouldbe used and immediately discarled, on the same :line, to keep that list itself confidential. Thesystem could be devised to require a password from the user, if desired.

Other Uses of a Security System

A security procedure of a tlpe described here, if it is based on a file system, is capableof providing other services as well.

First, the system can provide a monitoring of usage of the package, to any desired degree.
Attempts by unauthorized users that are foiled by the security system might be recorded, partlyto identify people who are trying to bust the system, and partly to identify potentialcustomers.

Second, such a system can provide a means of communication from the owners of the packageto the users. Unauthorized users can receive a polite notice of rejection, if that is desired,or notices can be posted to be read by each user the next time he validates. These notices can
be anything from announcements of package modifications, to suggestions for better use of thepackage, to descriptions of new literature about the package.

Finally, such a system might even include a procedure for messages from users to the ownersof the package, for example, requesting literature or special assistance.

121

A PL/1 BATCH PROCESSOR FOH APL

S. Chdrmonman and J. E.Cell
University of Missoui
Columbia, Missouri

ABSTRACT

This paper describes a translator for batch processing of APL. It was written in PL/1 and
has been operational through the usual:. card reader for input and the printer for output as wellas through...a typewriter terminal under Remote Job Entry of the Conversational Programming Systemfor both input and output. The subset of APL accepted by the translator is at the leevel ofAPL/1130, The translator provides file processing facilities via PL/1 and d form of object
program for_subseguent runs. It has served as a temporary substitute and then a supplement toAPL/360.

Introduction

Ideally we should have interact±tve and batch facilities for any good high-level language.in the case of APL[9] the interactive access has been excellently provided by the InteractiveAPL/300[10] and APL/1130[2] systems. Experimentation with algorithms and debugging ot programsare best done in the interactive mode. However, on17.:e a program has been debugged and is r iyfor production the source program need not and should not be reinterpreted over >ad aver torevery run. An object program or an intermediate representation shoUld be set up for subsequentruns. It the subsequent runs are done throuo!I patch the terminal could also be used tor someproductive purposes instead of having its keyboard locked up to wait far the result ot executionof a program.

In a non-ideal situation like at the University ot Missouri in 1970 (due to reasons not iuthe scope of this paper) it was decided not to provide APL/360, bu/.. to provide CPS(Conversational Programming System)[1] with conversational PL/1, BASIC az.: :::.:!mote job entry. Thesenior author was (and still is) strongly for APL and wanted his students to have access to APL.So, a home-grown translator for batch processing of APL was developed[4].

In order to have the translator operational as soon es possible, it was decided to use ahigh-level language rather than an assembly language. PL/1[7,8] was chosen for it is richer thanFORTRAN IV; has been used for system programming [5,6] dad was available at the University otMissouri.

The resulting translator is more than an interpreter but less than a comF:der. It provides
an object program not in assembly language but in a Polish form of descriptor Liocks with tablesof information to be used for subsequent runs if desired. Version 3.0 of the translator wascompiled.on the IBM 360/65 at the University of Missouri- Columbia. It runs in a- batch'environment with any APL program entered through a card reader and its result printed on a prin-er; or with both the program and the result communicated through an IBM 2741 under remote jobentry mode of CPS.

Orianization of the Translator

Figure 1 shows the general organization of the translator. The source program is processedthrough the lexical phase and syntactic phase one statement at a time to convert the originalsource program into a modified Polish notation. During this processing the tables of informationare produced and modified.

After the source program las been completely transformed into the modified Polish notation,the execution phase executes on the modified Polish notation to produce the results ofcomputation. Any data to the APL source program is read in during execution phase and the threetables created during the lexical phase are modified to reflect changes 'in the information theycontain during execution of the APL source program. For simplicity it was decided that onlyvalues and not expressions would be allowed as data in version 3.0 of the translator.

During the lexical phase each atom of the APL source program is recoded into a unit ofinformation which will be referred to as a descriptor block. A descriptor block serves as thesource of all information related to the atom for which it stands._

Each descriptor block itself is logically divided into two parts_ The first part, caller
the type section, contains 8 bits each of which may be 0 or 1. The second part, called the indexsection contains an integer number. Each descriptor block is exactly three bytes long, the type

bpi 123

section being ot, and the index section being two bytes. Figure 2 shows the logical break
down of a descriptor b*Ock.

The first of the type section are grouped together to tore a type code. Eight
type codes are poss:jable, tit only five are used presently. The flit pattern and meanings of each
possible type codes '.,31kown in Figure 2. The type-node of each descriptor block is
determined during tare lex4i=al yWaa;e when the descriptor mlock ilscreated.

APL

PROGRAM

LEXICAL ANALYZER

SYNTACTIC ANALYZER

V

MODIFIED POLISH

FORM OF APL PROGRAM

DATA
ai

EXECUTOR

OUTPUT FROM

APL PROGRAM

FIGURE 1: GENERAL ORGANIZATION

124

TABLES OF

INFORMATION

SYMBOL

TABLE

FUNCTION

TABLE

VALUE

TABLE

TYPE SECTION
TYPEP BIT (8)T
1 ,

1

1

1

1

1
1 1

1 1
1 1

. 1

INDEX SECTION
PTRP BIN (15)

NUMERIC INDEX

I/O KEY
OR DUMMY SUBSCRIPT MARK

BRACKET LEVEL INDEX

MONADIC/DYADIC MARK
OR NUMERIC/CHARACTER MARK

TYPE CODE

TYPE CODE MEAINING
000 END OF STATEMENT
001 NOT USED

'010 FUNCTION
--011 CONSTANT
100 NOT USED
101 VARIABLE
110 NOT USED
111 OPERATOR

FIGURE 2: DESCRIPTOR BLOCK

125

Bit tour may take on two different meanings depending on the type code of the descriptor
block. If the descriptor block is typed as being that of a constant then bit four is marked
luring the lexical phase to indicate the numeric (0) or character (1) attribute ot the constant.
It the descriptor block is typad as being an operator then bit four is marked during the
syntactic phase to indicate tha monadic (0) or dyadic (1) nature of the operator.

Bits five, six, and seven are grouped togetuer to rorm the bracket level index. During the
syntactic phase the bracket level index is set to reflect the imbededness ot each descriptor
block in a subscript. The fact the the bracket level index is a three bit pattern accounts for
the restriction of seven levels of subscripts in Version 3.0 of the translator.

Bit eight may take on tdo different meanings depending on the type code of the descriptor
block. If tne descriptor block is for an operator and the index section is set to indicate an
input/output operation then it eight is set during the syntactic phase to indicate whether it
is an iuput (0) or output (1) aperation. It will be noted here that the translator internally
handles an I/O symbol as in operator rather thau a variable. It the bracket level index is
greater than zero then bit eight is set during the syntactic phase to indicate whether the
descriptor block marks an actual subscript (0) or is a place marker (1) for a subscript which is
implied, but does not appear, e.g., the first subscript is A[;2].

The index section of the descriptor block with its numeric index may indicate any one of
several things depending on the type code found in the type section of the descriptor block. For
variable-type descriptor blocks or constant-type descriptor blocks the index section contains an
index to the array of pointers to the symbol table. This index may be used to index the array-
of-pointer variables to the symbol table to get the pointer to a symbol-table entry and hence
the symbol-table entry or the variable or constant in whose place this descriptor block stands.
The index to the array-of-pointer variaole to the symbol table is placed in the descriptor block
during the lexical phase for constants and variables.

For function-type descriptor block the index section of the descriptor block contains an
index to a pointer array to the function table. This index may be used to chain back to the
function-table entry for which a function-type descriptor block stands. The index section ot a
function-type descriptor block is completed during the lexical phase. If the type code for a
descriptor block is set to indicate an operator then the index section of the descriptor block
contains tne operation code as determined by an operator matrix in the lexical phase for the
operator for which the descriptor block stands.

For each variable, constant, and statement label found in an APL source program during the
lexical phase a symbol-table entry is created. Symbol-table entries are allocated dynamically as
needed and a pointer to each allocation is kept in an array of pointer variables called PTRSE.
The index section of descriptor blocks for variable, constant, and statement label contains an
index to PTRSE. The limitations on the number of variables, constants, and statement labels
contained within one APL source. program is set by the length of the poiuter array PTRSE and the
area of core available for allocating symbol-table entries.

Each symbol-table entry is logicaily organized into five sections. The first section
contains the name of the symbol represented by the symbol-table entry. The name is placed in the.
symbol-table entry when it is allocated and may be up' to eight characters long iu the present
version. The second element is called the,, type flags and is one byte in length. Version 3.0 of
the translator uses only the eighth bit to indicate whether the value area associated with the
table entry in question contains character (1) or numeric .(0) values. The third section contains
the rank and the shape of the structure. For simplicity Version 3.0 of the translator allows
structures only up to the rank of thr4e. The values -1 and -2 in the rank oyte are used to
indicate the empty vector and undefined structure respeCtively. The fourth section gives the
extent of the value area and the fifth section the pointer, to the value area.

Value areas are allocated and freed dynamically. 'If no value area has been 'allocated to a
symbol-table entry then the extent value is set to zero and the pointer set to null.

For each function found in the APL source program, a function-table entry is created during
the lexical phase. Function -table entries are created dynamically and a pointer to each
allocation' is placed in an array of pointers to the function-table entries (FPTR). The index
section of a descriptor block for function contains an index to FPTA. The pointer array FPTR in
the Version 3.0 of the translator is 100 members long and each function-table entry requires 13
bytes, of core storage. Therefore, up to 100 unique functions may be used within one source
program provided enough core storage is available.

Each tunction-table entry is logically divided into four- elements. The first element
contains the name of the function exactly as found in the source program. The name may be from
one to eight characters long. The second element of a symbol table entry contains a type code
setcluringthesyntacticphasetoindicathow many arguments will be passed into the function.

126

A type code of "1" indicates the presence or a right hand argument and a type code of "2"
indicates the presence of both a right hand and left hand argument.

The next two elements of-a function-table entry are entered into the function table during
the syntactic phase and contaii the line number or address of the function header and the line
number of the last statement of the definition. This information is used during the execution
phase for execution of the function.

The last element of a function -table entry is a pointer to a parameter list. The parameter
list contains a list of indexes to the array of pointers to the symbol table .(PTRSE), the
parameter list is dynamically created to the length needed to contain indexes to each variable
found on the function-header statement. The order of the indexes in the parameter list is
significant. The first position in the List contains either an index to the symbol-table entry
in which the result of the fun:tion will be found at the termination of the function, or the
first position will contain zero to indicate no result will be returned by the function. The
second position of the parameter will contain either the index of a local variable as listed on
the function header, or the index of the right-hand argument if the function is not niladic. The
third position of the parameter list contains either the index of a local- variable or the index
of the left-hand argument if the . type code is set to two. The remaining positions of the
parameter list contain the indexes to PTRSE for the remainig local variables., The minimum
length of the parameter list is one for function with no argument and no local variable.

The relationship between a descriptor block and symbol table, function table and operator
table is shown in Figure 3.

Sam2lePrograms

As mentioned earlier, I/O tor. the translator may be either through -reader-printer or IBM
2741 terminal. With the card card-reader-printer, APL' source program and output must be
represented in PL/1 character set such as a modification of [3]. Through IBM 2741 the present
version of the translator accepts only PL/1 character set, but a front-end is being developed to
allow use of APL character set.

A sample CPS session pf 'APL is shown in Figure 4. After the 2741- terminal has been
connected to the computer a session begins by the user making a login request. The computer
responds by asking for the password to be typed in by the user in the black-out spaces. If the
correct password is not given by the user after a few attempts, the machine will force him out
by locking the keyboard. Otherwise, it will print a message including the time and date. Atter
this point f the machine experts you to type any line it will underscore, backspace and wait.
In other words, any line you type in will appear with the first letter underscored.

In Figure 4 (a) the first command or request the user made after logging in was "load" and
"list" a program segment named "aplrje". This program segment is the set of PL/1 job control
cards for processing an APL program (or a batch of programs) and channelling the output to a
cataloged data set to be written via the terminal.

The set of PL/1 job control cards shown in the listing of "aplrjp" is for processing APL
and channelling the output to the printer rather than the typewriter terminal.

The last listing on Figure 4 (a) is a sample APL program complete with its job control
cards (and not PL/1 job control cards). It has been stored under the name "a3601".

To schedule .a job we use the CPS instruction

sched(A>>B>>...)

" are the names of programs which have been stored, and the symbol ">>" the PL/1
catenation operator. For example, in Figure 4 (b) after the listing of his library, the user

schedules the program obtained by catenating the set of job control cards in "aplrje" and the
APL segment in "a3601". The system responds by giving the job number (94 in this case) and the
time it _enters the queue. The status of the job may be requested by the CPS command "tind(A)"
where A isthe job number. On the fourth line from the bottom of the listing on Figure 4 (b),
the machine responds to "fiad(94)" that this job has been completed at 9:-56:23 which is about

_Six minutes turn-around-time.

Once the job is completed the output may be printed by using the reader program which is a
PL/1 program to be executed in CPS PL/1 and not CPS RJE mode. Therefore, the user must log-out
from RJE as shown on the last two lines in Figure 4 (b), and log-in PL/1 as shown on the first
line of Figure 4 (c). The reader program is executed by, the CPS command "xeq" and it asks for
the file name which is "printax" in "aplrjp".

127

The output of the APL program "a3601" is shown in Figure 4 (c). In general, the output from
Version 3.0 of the translator is arranged in two sections. The first section is headed by a

heading identifying the translator. Below the heading the APL program is reproduced and each
line is numbered. Errors focad during the leacical-syntactic scan are printed out below the line

in which the error occurred and contain a reference to the statement in which the error
ocay:red. Provided the program passes the lexical-syntactic scan, a message indicating that no

errors were found during tae syntactil: scan and that the execution phase is in control is
printed out.

The second section is headed by a heading which indicates the program output and the
translator or system output. The output from the APL source program is printed on the left-hand

side of the page. The right-hand side of the page may contain system output. System output
consists of the statement number arl, optionally, variable name associated with each output
operation executed in the APL slource program. Execution errors are printed out as they occar and
will generally reference an APL source statement in which they occurred.

DESCRIPTOR BLOCK

TYPE

CONSTANT
OR

VARIABLE

POINTER

ARRAY

TO

SYMBOL

TABLE

SYMBOL

TABLE

OPERATOR

OPERATOR MATRIX

VALUE AREA

FUNCTION

POINTER

ARRAY

TO

FUNCTION

TABLE

FUNCTION

TABLE

PARAMETER LIST

FIGURE 3: RELATIONSHIP BETWEEN A DESCRIPTOR BLOCK

AND TABLES

128

login(cps003,n24,rje)
PASSWORD: NRIMBR
GOOD MORNING;
load(aplrje)
Tist

10.
20.
30.
40.

USER 01; TIME 9:40:54 5/27/71;

0100 //XJOBCARD JOB (K11197,,280K),CBARMONMAN,MSGLEVEL=(1,1),REGION=310K
0200 //S1 EXEC AMPLE
0300 //SYSPRINT DD DSN=CPS003,N24,PRINTPX,DISP=(,CATLG),
0400 // UNIT=2314,SPACE=(TRK,(1,1)),VOL=SER=MFC163

50. 0500 //APL.SYSIN DD *
load(aplrjp)
Tist

10. 0100 //XJOBCARD JOB (K11197280K),CBARMONMAN,MSGLEVEL=(1,1),REGION=310K
20. 0200 //S1 EXEC AMPLE,TIME=2
30. 0300 //SYSPRINT DD SYSOUT=A
40. 0400 //APL.SYSIN DD *

load(a3601)
Tist

10. 0100)JOB

20. 0200 3 @* 4 @.

30. 0300 X :< 3 @* 4 @.
40. 0400 X @.
50. 0500 Y :< 5 @.
60. 0600 X@+Y @.

70. 0700 P :< 1 2 3 4 @.
80. 0800 P @* P @.

90. 0900 P @* Y @.
100. 1000 Q :< 'CATS' @.
110. 1100 0 @.

120. 1200)DATA
130. 1300)END
140. 1400 /*

(a) JOB CONTROL CARDS AND A SAMPLE PROGRAM

lib list
'form *xbrm *desc *al watjcl wattst watdat pascal
a3601 cardd facmn' apljcl apil jclwat jclapl aplxxx
aplpg apljob aplrje aplx4 a3602 nodata pscld aplmod

*aplrd
job

aplpg1
endjob

aplpg2
fnmain

aplrjp
expand

aplpg3 aplpg4 facfun permt

sched(aplrjel1a3601)
JOB CPSJOB94 ENTERED QUEUE 00 AT 9:50:18 71.147
logout.
TIME 9:50:54; TIME USED: CPU 00:00:06; TERM 00:09:39; PAGE 00:09:50;

login(cps003,n24,rje)
PASSWORD: IMAM
GOOD MORNING; USER 01; TIME 9:55:52 5/27/71
find(94)
71-08 CPSJOB94 COMPLETED AT 9:56:23 71.147
logout(resume)
TIME 9:56:41; TIME USED: CPU 00:00:02; TERM 00:00:49; PAGE 00:00:41;

(b) SCHEDULE AND FIND

FIGURE 4: A SAMPLE CPS, SESSION (CONTINUED)

129

login(cps003,n24)
PASSWORD- BROM%
GOOD MORNING; USER 01; TIME 9:57:03 5/27/71;
load(reader)a59sys
xeq
Enter simple file
name
'printax'
VERSION 3.0 PPL/UC

COMPUTER SCIENCE DEPARTMENT
UNIVERSITY OF MISSOURI, COLUMBIA

1 3 @* 4 0200
2 X :< 3 @* 4 @. 0300

3 X @. 0400
4 Y :< 5 P. 0500

5 X@+Y P. 0600
6 P :< 1 2 3 4 @. 0700

7 P P* P fj. P. 0800

8 P @* Y P. 0900

9 Q :< 'CATS' P. 1000

10 (' @. 1100
COMPILATION COMPLETE
*****NO ERRORS ENCOUNTERED IN SYNTACTIC SCAN, NORMAL PROCESSING CONTINUING
*****EXECUTION PHASE NOW IN CONTROL*****
***<__pRocapm OUTPUT

APL/UMC SYSTEM OUTPUT
V

STATEIENT# I
VAR NAME

12 ----> 1
12 7---> 3 X
7 ----> 5

1 4 9 16 7'

5 10 15 20 --_7> 8

CATS ----> 10

SAMPLE PROCESSING COPLETE

(c) OUTPUT ON THE TERMINAL

FIGURE 4: A SAMPLE CPS SESSION (CONTINUED)

CPS editing facilities may be used to edit any APL program. A sample editing session is
shown in Figure 5 with comments on the right-hand side of the CPS listing.

One of the assets of CPS is the ability td store user-defined functions in the CPS data
set. On scheduling an execution, any set of these functions can then be concatenated onto any
source program requiring them.

Other sample executions of the translator are presented in Figure 6 and 7.

Concluding. Remarks

The batch processing translator presented has been operational on the IBM 360/65 at.the
Uni-varsity of Missouri, first as a temporary substitute for a year and then as a supplement to

APL/360. As a substitute it provides access to a form of APL for teaching and research. It
allowed a local group of APL users to be set up and became a factor in the university's decision
to make APL/360 available in 1972. As a supplement it allows access to APL when terminals are
occupied for ATS and CPS. It also allows programs to be enteted through the card reader, edited
on the terminal, sample output checked on the terminal, and final output printed on the printer

it desired.

Although the subset of APL accepted by Version 3.0 of the translator is at the level. of
APL/1130 the translator does provide file processing facilities via PL/1 and CPS RJE. It also

provides object code in the form of Polish strings of descriptor blocks and information tables
for possible uses in subsequent runs.

One-of-the -drawba-cks-Of-tne translator is, of course, the character set. This problem would
be salved if and when an an APL print chain becomes available. With a minor modification of the

translator, a program may be entered on IBM 2741 with APL type ball and program listing done on
tha terminal in APL. If the numerical result of computation is voluminous, it may be printed on

the printer, leaving the terminal available for other uses.

130

loain(cus003,n24,rje)
PASSWORD. ROMEO
GOOD MORNING; USEP 02; TIME 11:12:15 5/28/71;
10. N :< 4=
5. P= :< 'PASCAL STAAME'
5!

5.

list
5.

10.
020,10

30.
40.
50.
60.

list 5 thFu
5.

10.
40!*M*N*

0= :< 'PASCAL START'

0050 0= :< 'PASCAL START'
0100 N :< #=

0= :< P :< I :< 1
A:= E= :< P :< (0 @, P) @+ P @, 0

:> (e> I :< I @- 1) 0/ B
0= :< 'END OF SAMPLE PROGRAM'

10
0050 -0= :< 'PASCAL START'
0100 N :< 0=

4 0. :> (N @> I :< I (2- 1) #/ B
40!/@-/@+/B/A/

4 0. :> (N @> I :< I @+ 1) #/ A
45. #= :< 'PASCAL END'
Dist 45 thru 50

4 5. 0450 #= :< 'PASCAL END'
50 0500 #= :< 'END OF SAMPLE PROGRAM'

erase 50 thru 50

list
5.

10.
20.
30.
40.
45.

save(pascal)

VERSION 3.0

0050 0= :< 'PASCAL START'
010n N :< 4=
0200 #= :< P :< I :< 1
0300 A:= 0= :< P :< (0 @, 13).@+
0400 :> (N @> I :< I @+ 1) 0/ A
0450 0= :< 'PASCAL END'

ERASE ANY CHARACTER BY
BACTSPACING OVER IT.

TO SEE A LINE, TYPE ONE
OF THE FOLLOWING TWO:

<LINE NO >!
<ATT>LIST

AUTOMATIC LINE NUMBERING.

LIST SPECIFIC SECTION OF
P. PROGRAM.
C.

REPLACE A SUBSTRING IN A' LINE.

REPLACE SEVERAL SUBSTRINGS.

@-

@-

ERASE A NUMBER OF LINES.

FIGURE 5: A SAMPLE EDITING SESSION

1 $+ R:< "PASCAL" N
2 0= :< P :< I :< 1
3 A:= #= :< R :< P :<(0 @, P)
4 :> (N @> I :< I @-4- 1) 0/ A
5 $+
6 R :< "PASCAL" 5

COMPILATION COMPLETE
*****NO ERRORS ENCOUNTERED IN SYNTACTIC SCAN, NORMAL PROCESSING CONTINUING
*****EXECUTION PHASE NOW IN CONTROL*****
**<--pRoGRAm OUTPUT

APL/UMC SYSTEM OUTPUT

STATEMENT#
I

1 2

1 1 - - - -> 3

1 2 1 ----> 3

1 3 3 1 ----> 3

1 4 6 4 1 ----> 3

AMPLE PROCESSING COMPLETE

APL/UMC
COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF MISSOURI, COLUMBIA
e. 0020
e. 0030

P @, 0 @. 0040
e. .0050
e. 0060
e. 0070

FIGURE 6: A USER'S DEFINED FUNCTION

131

VAR NAME

VERSION 3.0

1

2

3

4
5

6
7

8

9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

APL/UMC
COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF MISSOURI, COLOMdIA

IN :< ,X*IY+Z+IK/L1/81+E*8 /IA/(J*K*L1+Z)3' 3.

K:< 1 d.
ST :< $1 $? IN 3.
ST(7K2) :<,'31 3.
SP :< 0 1 2 3 0_1000 3.
IP :< 4 1 2 3 1_1000 3.
OP :< ,(+*/).), 3.
OD :< 'ABCDEFGHIJKLMNOPQRSTUVWXYZ, 3.

UT :< $1 I :< 0 3.
LO:= I :< I d+ 1 3.

:> IN(T.1%) SE OD) 4/ LI 3.
Of :< OT d, IiI%1Z1 3.

4= :< UT 3.
:> LO d.

L1:= :>IINC%141 3= '1' 1 4/ L2 a.
:> IIN(414) 3= '3') 4/ L3 3.

L7:= XX :< UP $1 ST(U%) 3.
YY :< OP $1 INItI%1 3.
:> ISP(UX%) IP(bYYZ) 1 ft/ L4 3.

K :< K 3+ 1 3.
ST(4K%) :< INI3I%1 3.

#= :< ST d.
:> LO 3.

14:= Of :< OT 3, SI($K%) 3.
K :< K 3- 1 3.

:> L7 3.
L2:= :>IST(%K%) 3= 'I" 1 4/ L5 3.

Of :< OT 3, ST(Ut) 3.
4= :< OT 3.

K :< K 3- 1 3.
:> L2 3.

L5:= K :< K 3- 1 d.

:> LO 3.
L3:= : >(-+ SIM(%) 3= 13') 4/ L6 3.

:> L9 3.
L6:= OT :< OT 3. SIAUZ, a).

K :< K 3- 1 a.
:> L3 3.

L8:= 4= :< 'THE FINAL POLISH STRING IS :' 3.

4= :< OT 3.

COMPILATION COMPLETE

*****ND ERRORS ENCOUNTERED IN SYNTACTIC SCAN; NORMAL PROCESSING CONTINUING

* * ** *EXECUTION PHASE NOW IN CONTROL*****

FIGURE 7: A SHUNTING ALGORITHM

132

t*********<--PROGRAM OUTPUT

APL/UMC SYSTEM OUTPUT
V

.SIAIEMESIELIAAa_NAME

X 13 OT
@* 22 ST

22 ST
XY 13 OT
d*I+ 22 ST
gYZ 13 DT

---> 22 ST
@*(+I 22 ST
XYZ+K 13 OT
())*(+0. 22 ST
XYL+KL 13 OT
XYZ+KL/ 29 OT
@*(+// 22 ST
XYL+KL/B 77---> 13 OT
XYZ+KL/B/ ----> 29 OT
KYZ+KL/B/+ 29 OT
@+(+// 22 ST
XYZ+KL/8/+*E 13 OT
@+*+// 22 ST
XYZ+KL/B/+*EB 13 OT
@+*/// 22 ST
@+*/(/ 22 ST
XYZ+KL/B/+*EBA 13 OT
cil+*/(/ 22 ST
+*/I/I 22 ST
XYZ+KL/B/+*EBAJ 13 OT
@+-*/I/I* 22 ST
XYZ+KL/8/+*EBAJK 13 OT
@.0-*/(/(* 22 ST
XYZ+KL/B/+*EBAJK*L 13 OT
XYZ+KL/B/+*EBAJK*L* 29 .'OT

ii;+*/(+I* 22 ST
XYZ+KL/B/+*EBAJK*L*/Z 13 UT
XYZ+KL/B/+*EBAJK*L*/Z+ 24 OT
THE FINAL POLISH STRING IS 39
INZ+KL/BLOEBAJK*L*/Z+/*+ 40 OT

AMPLE PROCESSING COMPLETE

FIGURE 7: A SHUNTING ALGORITHM (CONTINUED)

133

REFERENCES

1. Andrade, J. E., et al, Conversational Programming System. Program No. 360D-03.4.016, IBM
HaWthorne, New York, 1969.

Berry, P. C., APLL1130 Primer, Form No. GC2O -1697, IBM Corporation, 1968.

Charnonman, S., "Sixty- Tharacter Representation of APL Symbols," APL Quote Quad, Vol. 2,
No. 2 (July 1970), pp. 5-10.

4. Chermonman, S., Bell,. J. E., Browns, W. J., McGee, P. A. and Simmons, C. R., APLLUMC: An
Experimental Translator far Batch Processing of a Subset of APL, Technical Report No. 2

Department of Computer. Science, University of Missouri-Columbia, tidy, 1971.

5. Graham, ft- m., Use of Hill Level .Language for 2/stem Programming, Report No. MAC TM-13 MIT,
Cambridge. Massachusetts, September 1970.

6 Hedrick, G. E., An Implementation of a PLL1 Systems Program which Demonstrates the
Feasibility of Systems Programming in a High Level Language, Report No. IS -2244, Iowa
State University, Ames, Iowa, January 1970.

7. IBM system14360 operating System PL11 1FL Programmer's Guide, GC28-6594-6, June 1970 .

B. IBM, IBM 2ystemL360 Operating System PLL1 IEL Language Refeuence Manual, GC2B- 8201 -3, July
29, 1970.

9. Iverson, K. E., A Programming Language, John Wiley and Sons, Inc., New York, 1962.

10. Pekin, sandra, APLL36O Reference Manual, Science Research Associates, Chicago, 1968.

134

SUBTASKING IN APL

Alain liville-deChgne and Louis P. A. Robichaud
Universit6 Laval

Quebec, P. Q., Canada

Intrnduc tion

In this paper we discuss a nodificaiton to APL/360 which allows rather interesting modes of
use of APL, such as subtasking, multitasking, working without a terminal, communicating between
terminals synchronously or asynchro;,ously, etc.

By subtasking we mean the subdivision of a main program into parts called subtasks, which
may be executed concurrently, permitting such things as the overlapping of input/output withprocessing. One might consiler that multitasking is involved in a situation where a number of
APL users are controlled by the same APL task.

In APL each signed-on user executes only one program at a time, although APL is a system in
which a number of users are (canceptually) working concurrently. However they are essentially
working independently of one another, except when sending messages.

APL contains the baslc elements for our subtasking needs. However subtasking requires a
more sophisticated means of control and communication between tasks, as well as the ability ofstarting and stopping tasks.

Basic Colleens

If one user could be connected to another user's workspace, he would then have complete
control of what is done in that workspace.

Tue functions:

SL 4- SEND 'TXT'

Z 4- RD SL

allow communication to port Sq. just as if our terminal was physically connected to port SL. It
is important to note that the text 'TXT' is seen by port SL exactly as if it were being typed onits own terminal.

The output produced by port SL in response to 'TXT' can be. read and assigned to a character
variable Z. RD will read only one line of output at a time. It is used in the function:

Z 4- READ SL

which will read all the output from port SL and remove characters such as the 6 blanks producedby APL. For example:
6G SEND')LOAD 1234 WS

0114,R1:15

)SAVE'

READ 60
SAVED 14.05.02 05/11/72
1 2 3 4 5

15.02.05 05111/72 1234 WS
)COPY_ 1234 WS R

SAVED 15.02.05 05/11/72
R

1 2 3 4 5

In order to make.the system more practical and to avoid interfering with a real user it was
necessary to be able to automatically sign-on other ports, hereafter called SLAVES. The portwhich causes the sign-on is called the MASTER port, and it can have a number of SLAVES. Each
slave has the same user - identification and workspace quota, as the master, and is seen by theAPL system as a normal user. Example:

)PORT AMD
013 AMD

OS
62

)PORT-AND-
013 AND

062 AND

62 SEND')OFF'

135

where GS (get slave) is a function causing the sign-on of a slave port (by h master or by a

slave). This operation is extremely fast (a few,milliseconds) since there is no need for the

system to validate an account number.

It mist be carefully noted that master and slaves form a group, completely independent from
any other master-slave group in the system. The master always has complete control over his

slaves and he can not affect other user's slaves except when specifically authorized by these

user; - a process called SEARING, to be discussed later.

agtu sa2eXii§ion

Each port has a block of information called PEERESS describing the state of that port and

containing information pertaining to, the signed-on user (account number, initials, etc...)

APL/360 uses a dynamic buffer allocation scheme. All I/O buffers are grouped in a buffer

pool and are linked together to form chains.

Each PERTERN has pointers to two chains of buffers, one each for input and output. The

interpreter gets the character string to be analyzed from the input chain. When an input line

has been analyzed, the buffers used to hold that line are returned to the buffer pool.

All of the slaves' I/o goes through the buffers, each of, which has space for '20 bytes of

outgoing data and 19 bytes of incoming data. The system allocates a maximum of 20 buffers to any

port. With such limitations, a certain amount of control over buffer allocation becomes

necessary, since a slave attempting to use more than 20 buffers will be suspended until enough

buffers are available to continue execution.

The Zollowiug functions are used to control buffers:

R BFA SL -

NOOUT SL -

OUT SL

FO sr

returns the number of buffers currently allocated to slave SL.

causes the' system to ignore output requests from port SL . Text already
in output buffers is not affected and can be read at any time.

reverses the effect of NOOUT

frees all buffers ins the output chain of porta.

Proper use of the above functions can avoid all problems of buffer allocation.

azichunisitioa agd InterEupts

Each MINTERS has a full word called the ^global" variable whose value is independent of the

users' workspace.

R returns the value of this variable without changing it.

R -4- 01,N- changes -its-value-for-N-and -returus--the-old-value.---

The symbol .8 is the priiitive operator affectionately called "GLOBUL" (1,2) which is used

in monadic and dyadic fora for a number of special purpose functions.

SL SYNC AEG is'used to _synchronize tasks. It tests-bits cr-valaes in the global variable

Of another-port and, depending on the result of the test, either falls through to Continue

execution or enters the wait state. Testing is retried every 1/2 second until the conditions are

net. (Fig. 1)

ART is a vector of 4 or 5 elements used to build two machine-language-instructions, one

test, and one branch.

136

MASTER

Icu GLBL+3,1i-). 62 SYNC 2 3 1 8
!SCR 8,RETRN

3USPENSION-4.

!A'

SLAVE(52)

010

RESUMPTION e1 1

FIG 1: 4 SIMPLE EXAMPLE OF SYNCHROWISATION

A TERMINAL 1

SAVED

62

)LOAD TEST
17.12.18 05/11/72

GS

62 SHARE 62
12 SNARE 62
62 SEND')LOAD TEST

JOOUT 62
FO 62
COPLIB'

62 1 TEST17000'
17.14.21
17.14.22
062AMD: TRANSFERING 17.14.33
17.15.00

)LIB 987
W31
WS2
W33

)LOAD 987 WS1
. _

SAVED 17.14.35 05/11/72
)LOAD 987 WS2

SAVED 17.14.46 05/11/72
)LOAD 987 WS3

SAVED 17.14.58 05/11/72
)PORT AMD

012. AND -

029 An
A THE SLAVE ON PORT 62 COMMITTED .SUICIDE.

mrn 2:OUTr1IT OP TPP Twn TFT"TPAT/S YYPIPPGTFD T') TPr
SLAV P TIPTCq rx.,Turr's cn7,57-R.

A TERMINAL 2
)LOAD 314158 TEST

SAVED 17.12.18 05/11/72
62 2 TEST'987'

17,13.45
17-14.34
17-14.59

137

type of comparienv:
0 CLC :compare logical
1 TM test under mask
2 CLI ..znompare logical

character

immediate

ARC[2] ,pissition (0,1,Z or 3) -from, left of the first. (or only) byte of the
1=mvparison.

ARO[3] :mediate mask for CLI and TM or length of the :comparison for CLC. (The

Ibeagth. must be 5_4 ARG[2])

ARC[4] :cvnditi3n code used in a BCR instruction. If the branch is taken,
testing is stopped and execution of the program continues.

ARC[5] constant to compare with in the CLC instruction (ARG[1]*-0.0)

ATTN SL causes an attention on port SL.

SPIE EN'

INT SL

intercepts errors occuring during the execution of programs. When an
error occurs (SYNTAX, RANK, ETC...), the system automatically branches to
line LN in the program.

returns an integer vector of length two: error code, line in which the
error occured.

generates an 'INTERRUPT' error when slave SL is executing a program.
This error occurs just before starting the execution of a new line in the
slave's program. If the SPIE function was executed, the slave can process
the interreupt and the execution of:

-+ 1 + FSW

will return to the point of interruption. The interrupt is prevented from
occuring in the middle of a line in order that statements of the type:

(I÷I+1) pA

do not get executed twice.

SHARING SLAVES is accomplished by:

WHO SHARE SL

The master uses this fuction. to permit port WHO to use'his slave SL. -For the time
being, a SHARER -.can use all ce&tlie slave functions on a shared Slave. A function will
soon be implAmmented in orris 'to limit a sharer's access: to oaly one or more of the
.slave functioridecided by the. master.

There is an :..:mrtim,testing case when a slave is shamed on itseilif.Itcam, then send-
-- --itseIf-input-ana7med-its--own7--cutput--- 'a gross :simulation Of the e (unquote);.

function.

WORKING WITHOUT A MASTER::

Aiken the 1114%#.T vats his sessiimma,. all his slaves are Avormally:ThIrrzed off the system.
-There are somee-isg?Oications WI:ere-a program_is..essentiaIly CPU Amend and monopolizes
the use of a_ tozziniZi I tor nOt1'L#4- " .

1(22P. pesOdits- signed -on and working evee.Athenthe master has
signed off. -Itvia.::zsatIsequent sigamon the nester can-see if the Ls-levels program is

-progressing line:many.

UNKEEP SL reverses' the effect of KEEP.

A more powerful use of this stand-alone mode of operation can be had by sharing the
slave on itself. Tha slave can then send itself involved sequences of commands,
analyze its own output and possibly correct some errors.

T EXPRESS SL forces a sign-off of port SL in T minutes. This function is normally
applied to stand-alone slaves, in order to make certain that the slave does not get

caught in the system.

138

UNEXPRESS SL reverses the effect of EXPRESS.

A simple problem is given in the appendix in order to illustrate a number of the fuactinasdescribed above.

Conclusion

The system presented here is in an early stage of development. However, even at this stage,it extends the usefulness of APL in our environment. In the near future we plan to add suchthings as: slave quotas-analogous to workspace quotas, and limitations on the access of sharers.It will be possible to reserve slaves for certain tine periods to make certain that slaves areavailable.

REFERENCES

Colloque APL, Paris 9-10 septembre 1971
Institut le Recherche d'informatigue et d'automatique

Domaine de Voluceau - 78 Rocquencourt - France.

1. G. Dhatt, L. P. A. Robichiud. APL, flow graphs and finite elements. p. 37-69.

2. P. H. Fortin, D. Samson, P. Laverdiere, L. P. A. Robichaud. Utilisation d'APL dans lecadre du projet des statuts du Quebec. pp. 115-137.

APPENDIX

This example is not one of a typical application, but rather a concise presentation of many
of.the.slave functions. It illustrates the following points. (see figures 2 and 3).

1. Getting a slave
a. the master gets a slave
b. a slave gets a slave

2. Sharing aslave
a- wrth another port
b. . on itself

3. Sending input to a slave :for execztilon
a. master to slave
b. sharer to slave
c. slave: to slave

4. Synchronisation
a. master-Slave
b. sharer-slave
c. slave-slave

5. Reading the output of a slave

The COPLIB function, executed, by a. eslave, copies -all tliworkspacesz,,of a library intoanother (or the same). There aret4O-USers'ComienicetIng mieth thslave: the master who sendsthe identificaiton of the source library, "and a sharer litho prumides the..1demtification of the
sink., Synchronisation is necessary to make sure that themlilue oflYthe sink is not sent beforethat of the source.

The left argument of the TEST function is a two elements numeric vector consisting of theport number of the slave and a code: 1 for the master, 2 for the sharer.

The right argument is a library number - the source or the sink depending on who isexecuting the function. Three time-values are printed:

1. entry into the function
2. transmission of input-for the slave
3. the end of the library copy operation

139

The EXEC functiOn executes a series of system commands. The slave first sends itself (port
number: e6) the system commands as input and a 0. It then executes a . The first system

command is read and executed. The again asks for input. This continues until a 0 is Lead.
This 0 becomes the result of the and the EXEC is terminated. For example:

R4-:
)SAVE TEST

12.57.09 05/10/72
:

)LOAD WS
SAVED 23.12.40 05/09/72

A HERE WE CAN DO ANYTHING
)LOAD TEST

SAVED 12.57.09 05/10/72
:

0

140

7 COPLIB:Rt3:SOU:SINX:A:L
[1] n PERMIT THE FIRST TERMINAL TO SE13 INPUT FOR THE UPCOMMING 0
[2] ® 1 1

C33 A GET A SLAVE AND SEND IT)LIB 00000 .

[4] A THE 01 1 IS TO AVOID RACE CONDITIONS... WE COULD TRY TO READ
C51 A T10 SLAVE'S OUTPUT BEFORE IT HAD STARTED TO EXECUTE THE)LI3
[e.] (S4-G3) SE1D ')LIB 1,(SOU4-DEC -1tP4-a),CR,101 1'
[7] n L_IS GOING TO 'BE A Nx11 MATRIX, :EWE RESULT OF)LIB
C81. L4- 0 11 P'
C91 A WAIT POR THE En. (CLI GLOBVAR+3,1 :BCR 8,RETURN)V
E.101 S SYNC 2 3 1 8

[11] -4(' °A.=6fR4-RD S)/2+I26
-0(1A,I26),PL4-L.Ctl]

C:13J A W3'.00111-T dEED THE SLAVE AlT-WORE.
[14] SHAD ')OFF'

.SEWEC 1)4.5G1 1,(DEC(0 1 2)pP),'TRAW3FERING ',TIME
CAL3 -3/3K4-Did'

EI-71i A TRANSFER THE WORSPACES
[181 EXEC ')SAVE 1,CR,.1)LOAD ',S011,' ',A,CR,1)WSID 1.SINK,(A4-1 1 1 11

4L),C3,1)SAVE1,C3,1)LOAD TEaT'
[101 -0.(x1PPL4- 1 0 +L)/-1+126
[2.0] A COMMIT SUICIDE
17211 EXEC 1)OFF1

7

7 EXEC BLA
UIZT (e6) SEND BLA,CR,101
U27 AETPUT WILL BE 'EXECUTED Iii THE 0

BLAO
7

1. TEST LIB
[II TIME
[2] (d-1pd) SYNC 1 3 ,(1+N),1
r1T .N SENNDE006),",LI3
r4.3

[5] 1 SY10 2 3 0 8

r61: .TIME

R4-DEC d
[1] R4-101234567891[(11)+(10p10)TYPN]

V

"T(3:USTTY0 17 PF'TTPPPT 7UPCTTnn3.

141

Users of APL ar
they have however to go
executed a great number

The natural desir
is the origin of a grea

However an APL i
unity that should not b
repercussioms on the o
preventing these reperc
not be welcomed (if at

It is therefore n
shod that it is indeed

Our proposed modif
.structure of. the mappin
that works, then our ma

SUG;ESTION FOR A "NAPPED" EXTENSION OF AFL

C. 4eibovitz
University. of Alberta

Compxting Center

e under the "spell" of Meauty, conciseness and elegance of th
back to Fortran, for instance, whenever they cannot avo
of times in order'to limit the CPU time used-

e- for enlarging the OlaSsflj of cases dm which "It would pay"
t number of suggestions for modifications to and: extensions. of

nterpreter is a complicated collectiou:of intarrelated softwar
e disrupted. A modiPiiration in.any part of the collection
peration of the remainder of the programs and there is no _a pr
ussions. from MeinT-Mairafol and, in need of. necessary correction
all possible).

of enough to show-that a given modificationilameeded; it is n
implementable and has no disruptive character

ication is, in a .sense,. a "mapping" of an actmal interpreter.
g is such that we nmay conclude that: "if thereexists an 4TL
pping will worktoo."'

e language.
id a. loop

to use APL,
APL.

e forming a
will have
iori reason
s that may

ecessary to

The logical
interpreter

Meview Of A Non-Modified APL Interpreter

EaCh time a line is enter from temmimal, the interpreter- thecUsi the natwre of the line:
Is it 5or instance a command?.:ar a lime. init=cFinition mode? .or. in execution mode?... Let us
designateby CHECK the module 3:f the dut,Amp7-estar that finds :mot the nature of a line and decides
what other module is to handle the line. atotbealine has beementeredimthe execution mode, it
will be executed from right to left. Ffhnwever, > or a nuMberof reasons, this cannot be a
straightforward procedure:

1. There is no one -to -one correspondence between a "primitimemathematical symbol" and
an execution routine.. One same symbol may be a nonadictfunction. or may .be a dyadic
one.

2. The mathematical
placed at its left.

aeaning of a symbol may depend oul'iremature of:another symbol.

There may be brackets altering the normal right-to-lett :order of operations.

4. Mere may be mistakes in the linemaking it unexecutahle

There must therefore exist a module that will analysetaeldne, will call execution
routines in a proper order and provide those routines with the valmes:of the variables.

We ar
&Mat it is
*_takes care
parameters
intermediat
error messa

e not concerned her
actually done, i.e.
of a line in execut
and variables, for a
e results, for findi
ges.

e with the way-in which this is done, it is enough for
there exists in the interpreter a:module, we call it

ion mode. GRA1 issues "orders" forlspace, for fetching
rasing intermediate unnecessary results, for stor
ng out whichroutine is to be called, for calling it,

us to know
GRAM, that
values for

ing needed
for issuing

We thus designate by ;RAM all the parts of the interpreter that stand between a line
recognized in execution mode, and its actual execution. Everything the computer does in
execution mode is therefore the consequence of "orders" issued to the computer by GRAM while
analysing an entered line in execution mode.

The Need For A Modification

The correct execution of a statement results from the collection of correct "orders" issued
by GRAM in a correct sequence. However, the main work done by GRAM is not so much to issue
those orders but to find out which orders are to be issued.

In the SAPPED LEVEL (the name we give to our APL modified version), the function is to be
stored in such a way that the orders to be executed, and their proper sequence, is known in

142

advance. The execution of the function thus becomes faster because there is mo.need for syntax
checking time.

timed Level

We recall that CHECK examines the nature of a line and delivers it t:GliNE xf -the line is
in execution mode. CHECK has of course other alternatives than calling GRAM. Itezmailizznot modify
the existing alternatives:, we viii add one alternative aore that we call Mappemmal. It means
that once a line is entered,.CLECK will ask an additional question: is it a memtiargrzcommand? A

negative answer will result in the unmodified procedure going on A positiveautt..... will result
in a modified procedure described below.

It may be possible lateto allow the use of the mapping command to all us:.. in

order to simplify our discusslon we will consider the case in which the aFpnamv command is

available to a priviledged APEuser.

Using the mapping mode:, the user can form a library of "mapped functitunsr tniatcannot be
edited or modified but can benaecuted by any APL user..

When the user issues the mapping command, he must add two "parametere".1Whil.,Ci ere the name
of the unmapped function and the name under which the mapped function 41ill 'me s-tored. The
function to be mapped eitheir does not call for another function or:ccali2,16. e. number of
functions that have already been mapped. The list of all mapped functions: zis d in the
symbol table in the workspace of the priviledged user.

The mapping command will "deliver" the function to be mapped to a moduleAwei=a21 MAPGRAM to
. indicate that, in a sense, this module is a mapping of the GRAM module.

MAPGRAM will proceed to analyse the lines c4ithe function in the way "GIDdA3° °rwtsld have done
it with the following differen :es.

1. MAPGRAM considers all symbolic names as defined and does mattiswee value-error
messages. Every symbolic name is compared with the symbol table otamm4Nnet '.functions.
Depending if the symbolic name exists or does not exist in the:toddle*. ZW2SINT will
respectively consider it a defined function or variable.

2. MAPGRAM will analyse lines of a function already tested in the a mode by the
user. This function is supposedly syntax-error free (this concept ww714 '3* discussed
later.) Therefore, for proper values of the arguments, GRAM wmadidelnamme issued a
number of "orders": fetch, store, reserve storage place,, call for emmmmfjen routine,
erase, etc...

MAPGRAM will issue "mapped" orders that could be described by: "copy aid strum in proper
order the orders' that GRAM would have issued." For instance, whenever GRAM wamkt Am eve called
for storage, MAPGRAM will order to store a copy of the call for storage spmmg41merever GRAM
would have called for a given execution routine, MAPGRAM will order to store amuorty of this
execution routine.

In short, the Mapping oUthe function will consist of the collection imm:TmtnTer order of
copies of fetching routines, store routines, execution routines, etc...,

These routines will be linked either by MAPSYNT or by the module LINK act:10e at execution
mode for mapped functions. The linkage consists of taking care of the proper order:. Land of the
addresses of the intermediate results and transforming the copy of a call into an actual call of
a routine. It must for instance insure that the output address of a given execution routine may
have to be identical with the input address of the next execution routine.

In short LINK takes care of a mapped function in the execution mode. LINKacalled every
time the name of a mapped function appears, in a line at execution time.

Error Messaggg

APL .delivers two kinds of error messages. The first kind corresponds to-whAtawe call a
"built-in error". It is delivered when GRAM concludes that there does not exist an execution
routine corresponding to the symbols entered in the line. This kind of error will bedelivered
for instance if there is, at execution time, a symbolic name not yet defined or if a_ line is

entered with mathematical symbols in a non-sensical sequence. The second kind of.ecror messages
is delivered by an execution routine when GRAM does find out, at a given stage: : execution,
that execution routine is to be called and when this routine cannot be executed, the values
and number of arguments delivered to it (rank error and domain error for instance)..,

143

The built-in errors can be detected during the mapping operation by .MAPGRAM in exactly the
same way as GRAM is doing it, i.e. by taking over in KAPGRAM the procedure followed by GRAM in
this case. The error message could display the faulty line and indicate the place where the
error has occured.

This however cannot be done for the second kind of errors. They can be detected at the
mapped level only during execution time. The function is then stored differently and there is no
record, at this mapped level, of the form in which the function was entered unmapped.

However, this kind of error would have been detected at the unmapped level by an execution
routine which could tell the nature nature of the error (rank or domain) and since we have at
the mapped level a copy of the execution routine, it is still possible to deliver at this level
an error message containing the following information.

a. The nature of the routine that has detected the error (addition or multiplication or
iota operator routine etc...)

b. The nature of the error (rank arror or domain error)

c. The values of the arguments for which the error was detected.

This means that the copies of the execution routines stored at the mapped level have to be
slightly modified in their error message subroutines.

If the user is mapping functions already tested at the unmapped level and if he checks that
all functions called by the one he is mapping have already been napped before, there will
therefore be no error message delivered during the mapping process; those are the functions
referred to before as Syntax-error-free functions.

The Advantages Of The Mapped Level Suggestion

The. Mapped Level modified APL has many of the advantages of a compiler while being quite
distinct from it.

It is clear that the execution of the functions will be much faster at the mapped level.
The fact that the syntax analysis has been done makes them close to compiled functions. However
there is this important difference uetween the mapped levet and a compiler: A compiler delivers
an object program in the machine language that can be directly executed. In particular' the
compiled function should have all the needed instructions for storage handling, whereas a
function stored at the mapped level is still in need of the module LINK at execution time.

It is also clear that the interractive feature of APL is not disrupted by the introduction
of the mapped level as it would have been with the use of a compiler. In the case of most
Fortran.compilers for instance, alternating orders of compiling, executing, compiling, executing
etc... require successive loadings of the compiler. In our case, the same interpreter will
remain loaded in the computer while mapping or executing.

Another advantage is the flexibility of the combination of the two levels; in particular,
it facilitates the editing and debugging process. A function can be tested and displayed at the
unmapped level; the faulty line is then displayed with an indication of the place and the kind,
of error. It is then possible to execute parts of the line instead of executing the whole
function. Such a facility would not have been available with a compiler. Once edited and
debugged, the function may be stored at the mapped level.

ACKNOWLEDGEMENTS

The author is indebted to Dr. H.S. Adams, Dr. D.H. Bent and to Mr. G. Gabel for suggestions
and fruitful discussions.

NEPENENCES,

1. In the Computing :enter of the University of Alberta, a 360/67 IBM computer is used
(mainly under M.T.S.). The c.p.u. time needed for loading an object program from a

file is greater than the loading time needed in the APL case. There is therefore a
class of programs that would take less time to be executed with APL than with a

FONTRANG generated object program (if loading time is added to the execution time).

144

APL AS A NOTATION FOR STATISTICAL ANALYSIS

K. W. Smillie
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

Abstract

This paper discusses the use of APL as a notation for statistical analysis and presents as a
simple example the derivation of the chi-square statistic for independence in a two-way
contingency table.

1. Introduction

The last few years have witnessed the remarkable growth in popularity of the APL language, until
now it has been classified along FORTRAN, PL/1, BASIC and a few other languages as one of
the most important programming languages in use as present, and perhaps for the next decade.
Such a development should indeed be most gratifying, especially to those who have been
associated with the use of APL almost from the time of its first implementation and who must
have had doubts from time to time about its survival. However, the acceptance of APL as a
programming language has tended to eliscure the origins of APL as an attempt to develop a
notation for deriving and describing algorithms that was more powerful, more consistent and less
ambiguous thdli conventional mathematical notation, and which was, incidentally, directly
implementable on a computer. For these reasons it may be of some interest to consider the use
and implications of APL- as a no.tation. We shall consider as an example the derivation for a
two-way contingency table of the maximum likelihood estimates of the expected frequencies on the
assumption of the independence of the two categories of classification, and the use of these
frequencies to obtain a convenient expression for the calculation of the chi - square statistic
for independence. We shall first summarize the analysis in conventional notation and then
derive the results rigorously in APL. We shall conclude with a few remarks on the use of APL as
a notation.

2. Summary of analysis in conventional notation

Suppose, that we have a two-way contingency table with r rows and c columns in which a sample of
N observations is classified according to two attributes. Let fij , where i=1,....,r, and
j=1,....,c, be the number of observations occurring in the ith class of the first category and
the jth class of the second category. Let ri,=kij and cj=7i- fij be the marginal row and
column totals, respectively. Thus N=1Fri = If we let nrii be the probability -

according to some hypothesis that an individual selected at random will fall in the ith class of
the first category and the jth class of the second category, then the corresponding expected
frequency is eij = Nyij A measure of the deviation of the observed frequencies from
expectation is given by the statistic

X
2

=
(fjj ejj)2

i,j e.
1j

which has the chi-square distribution with (r-1)(c-1) degrees of freedom.

If we assume that the two categories of classification are independent, then we may write
Tfij= 7(ii/j, where is the marginal probability of an individual picked at random falling
in the ith class of the first category independent of its classification according to the second
category, and rij is a similarly defined marginal probability for the jth class of the second
category. Thus, in order to calculate the expected frequencies EF the assumption of
independence, we must estimate these marginal probabilities from the sample. According to the
method of maximum ikelihood the marginal probabilities are determined to maximize the
likelihood , of the sample, where the Tfi and vi are subject to the
restrictions ni=1 and 1 . Thus, we find the unrestricted maximum of the
expression

f.4
+ p(Em.

. .)
. j

1.3

where X and p are the Lagrang,ian multipliers. If we differentiate L partially with
respect to nit , rrj, 'X and p , set the partial derivatives to zero, and solve Athe resulting
equations, we find that the estimates of TTi and ITj are given by Vi = ri/N and
4j = cj/N , respectively. Thus, we find that the expected frequencies are given by
eij =ricj/N , and the value of X2 may be simplified to

f.2

X2 = NC ,I 1--2-- -1].
ricj

3. Analysis in APL notation.

Suppose that we have a sample of observations arranged in a two-way contingency table according
to two categories of classification, and that we wish to test the hypothesis that the two
categories are independent. Let the data be represented by the two-dimensional array F so
that F[I;J] , where /et(pF)C1] and Jet(pF)C2] , represents the number of observations in
the Ith class of tile first category and the Jth class of the second category. For
convenience, we shall let the row sums of F be given by the vector R , where

C17.R4-+/F ,

the column sums by

[2] C4-+/[13F

and the total number of observations by

C3] N++/R .

We shall assume that there is a probability matrix p , where pr pF , so that P [I;J] is
the probability that an individual selected at random will fall in the /th class of the first
category and the Jth class of the second category. Since the expected frequencies in'the
contingency table are --NxF, which may be represented by E, say, the deviation ofthe observed
frequencies from expectation is given by the statement

Z 4- +/+/((F-NxP)*2)+11,1xp

Since we wish to test the hypothesis that the two categories are independent, we may replace P
by the outer product. Ao.xB, where A +4 +/P gives the marginal probabilities of the first
gategory regardless of the second category, and B +4 +/[1]P gives the marginal probabilities
for the second category. Since these marginal probabilities are unknown, they must be estimated
from the sample data F . We shall derive these estimates by the method of maximum likelihood.

The likelihood of the observed sample is given by

x/x/(Ao.xB)*F ,

where A and B are subject to the restrictions +/A + 1 and ±18 4- 1. If we take the
natural logarithm of this expression and make use of some simple identities, we may-write

ex/ x/(A0 .xB)*F +/+/Fx0A0 .x5

+/+/Fx(eA)0 .+013

((*A)+ :x+/F)+(e5)+ .x + /C1

((oA)+ .)R)+(eB)+ .xC .

Therefore, we must find the unrestricted maximum of the expression

L +4 (((eA)+ .xR)+(eB)+ .x,C)+(G x1++/A)+Hx1++/B ,

where G and H are the scalar Lagrangian multipliers.

Let us represent the maximum likelihood estimates of A and B- by AHAT and BRAT
respectively. If we differentiate 'L with respect to G and set the derivative to zero, we
have

+/AHAT + 1

Similarly, by differentiating L with respect to II we'have

+ /BHAT +4. 1- .

Now differentiate L with respect to the vector A and equate the derivative to zero, and
obtain

(+AHAT)xR +4. G .

147

Therefore,

R

If we sum both sides of .this expression, we obtain
N-4-* G ,

and thus

AHAT .

Similarly, by diffeentie,t.Lng. L. with respect to B we may snow that-

BHAT C+N .

Thus the expected frequencies may be estimated by

E NY.AHAT* .xl3HAT

Nx(N4-N)p..xC+N

-+: Nx(Re .Y.C) 1Vir 2

+4- (R0 d(C)+N .

Therefore, the deviation of the observed frequencies from expectation is given by

Z +4- +/+/((F-N)*2)+E

Now

and

+4

+4

+/+R(FxF)-(2)(FxE)-ExE)+E

+/+/(FxF4E)-(2x.F)-E

(+/+/FxF4F)-(2x+/+/F)-+/+IE
.

+1+1F

+/+IE +/+/(Re..xC)+N

((+1R)=,..x,-16)+N

4-4- NxN+N

N.
---Therefore,

Z / ;<Ff 2 'xIi;

(414-/F

(1-/1-/F xFi(Ro .xC)+N)-N

'Nx(-1-/+/FxF4-Fo .xC)-1

Nxi++/+/FxF4R0 .)(1C .

Therefore, we may compute the test statistic for the deviation of the observed frequencies from
expectation by the statement

[4] 2 +4. Nxi++/+/FxF4P0oC

4. Implementation

The four numbered statements appearing in the analysis of the preceding section may be
considered, to be the body of the monadic defined function CHSQ with a right argument, F anda result 2. This function is given in Figure 1, which also gives two examples of its use with
some sample data Fl and F2.

148

v Z4-CHSQ F;C;N;R
[1] R4-1-/F

[.2] C4-4-/[1] F

[3] ?/ - + /R_

Z4-Nx-11-+/+./FxFfR.0.)(C
V

Fl
5 9

11 15

CRSQ Fl
0.1648351648

F2
42 31 12 17

34 '25 31 22
48 37 18 13

CRSQ F2
15.27832566

Figure 1. Function CRSQ and
some examples of its use.

5. Conclusions

The example which we have discused in this paper is an illustration of how the use of APL as a.

notation may remove the need for programming in the conventional sense since selected statements

of the, analysis become the body of a defined function which is executed on the computer.

Although this example is a very simple one, and, indeed, was chosen for this reason, the ease

with which APL was used for the analysis hopefully will suggest that such an approach may be

worth considering for other more complicated problems. Some topics which come immediately to

mind are multiple regression analysis, analysis of variance for factorial designs, nonparametric

methods, and the analysis of incomplete block designs. The limited work which appears to have

been done on some of these topics is most encouraging, and suggests that most interesting

results await the persons who will consider them in detail. Only by gaining experience in the

use of APL as a notation, as well as a programming language, will the adequacy of APL in this

role, as well as the direction of further extensions to the language, become apparent. It is

hoped that this short paper may help stimulate research on these subjects.

E. Reference

Keeping, E.S., 1962. Introduction to Statistical Inference. D. van Nostrand Co., Inc.,

Princeton, New Jersey.

149

AN ADAPTIVE QUERY SYSTEM

E. Kellerman
IBM Corporation

Systems Development Division
P. 0. Box 6

Endicott, New York 13670

This paper will describe an adaptive query program coded in APL. The purpose of the programis to allow users to ask questions in everyday English and to receive answers with minimaldelay.

The prklgram is "taught" tie correct ans
asking it questions on the subject of intere
questions, it attempts to guess at the ans
sure of the answer it has given, then it doe
confirmation of the correctness of the
request verification of the answer given, th
program that an incorrect repty was given
reply, but the instructor feels ±hat the pro
program to 'try again'. Consider the foil
unknowledgeable program. The lines typed by

110W 1)0 T GET OFF?

***WHAT IS ANS ?
HIT CARMAGE RETURN!l

WHAT PROGRAMS ARE AVAILABLE?
***WHAT IS ANS ?
LIST, DUP, AND INTER.

WHAT DOES LIST DO?
***WHAT IS ANS ?
LISTS CARDS.

WHAT DOES DUP DO?
***LISTS CARDS.

'*** WAS THAT RIGHT?
NO

**WHAT IS ANS ?
DUPLICATES CARDS.

WHAT DOES INTER DO?
***LISTS CARDS.
*** WAS THAT RIGHT?
NO

***WHAT IS ANS ?
INTERPRET CARDS

HOW DO I LIST CA
***WHAT IS ANS 7,1,

\ \

USE LIST.

),,,
i

/
HOW DO I DUPLICATE CARDS?

/ ***USE LIST'/

/
*** WAS THAT RIGHT?
NO

** *WHAMS ANS 7,

USE D

HOI DO I INTERPRET CARDS?
***USE DUP.
*** WAS THAT RIGHT?
NO

***WHAT IS ANS ?
USE INTER.

wets by a human "instructor", sitting at a terminal,
st. As the program learns the answers to some of the
wet to "similar" questions. If the program is "very"
s not request verification, otherwise it requests
answer it has given. Even when the program does not
e instructor still has the option of informing the
, by entering '71. If the program gives an incorrect
gram should know the answer, he can request the
owing terminal session,. which starts with a complete
the terminal are preceded by 4***.:

150

HOW DO I DUP CARDS?
***USE LIST.
*** WAS "THAT RIGHT?
TRY AGAIN
***USE DUP
*** WAS THAT RIGHT?
YES

'WW DO I DUP CARDS?
***USE DUP
*** WAS THAT RIGHT?
YEP

HOW DO I INTER CARDS
***USE LIST.

*** WAS THAT RIGHT?
TRY AGAIN
** *USE INTER.

*** WAS THAT RIGHT?
YEAH

110W DO I INTER. CRDS?
***USE INTER.

HOW DO I LIST CDS.
***USE LIST.

WHAT PROGRAMX AVAILABLE?
***LIS DqP, AND INTER.

WHAT DOS DUP DO?
***DUPLICATES CARDS.

HOW DO I DUPL MATE CRDS.?
***USE DUP.

HOW DO I INTERPRETARE CRDS.?
***USE INTER.

WHAT DO INTER DO
***INTERPRET CARDS.

a

HOW DO T GST CRDS?
***USE LIST.

WHAT DOES LIST DO????
***LISTS CARDS.

WHAT DEOS INTRE DO?
***INTERPRET CARDS.

HOW DO I SIGN OFF.
***HIT CARRIAGE RETURN!!

HOW DO I GET OFF?
***WHAT IS ANS 7
HIT CARRIAGE RETURN!!

WHAT PROGRAMS ARE AVAILABLE?
* **WHAT IS ANS ?
LIST, DUP, AND INTER.

WHAT DOES LIST DO?
***WHAT IS ANS?
LISTS CART

WHAT DOES DUP DOi
***LISTS CARDS.

'.*** WAS THAT RIGHT?

NO
. ***WHAT IS ANS 7

DUPLICATES CARDS.

WHAT DOES INTER DO?
***LISTS.

*** WAS THAT RIGHT?
NO
* **WHAT IS ANS 7

INTERPRET-CARDS.

HOW DO I LIST CARDS?
***WHAT IS ANS ?
USE LIST.

HOW DO I DUPLICATE CARDS?
***USE LIST.
*** WAS THAT RIGHT?
NO
***WHAT IS ANS ?
USE DUP.

HOW DO I INTERPRET CARDS?
***USE DUP..

*** WAS THAT RIGHT?
NO
***WHAT IS ANS ?
USE INTER.

HOW DO IDUP CARDS?
***USE LIST.
*** WAS THAT RIGHT?
TRY AGAIN
***USE DUP.
*** WAS THAT RIGHT?
YES

151

HOW DO I DUP CARDS?
***USE DUF.
*** WAS THAT RIGHT?
YEP

HOW DO I INTER CARDS
***USE LIST.

*** WAS THAT RIGHT?
TRY AGAIN
***USE INTER.
*** WAS THAT RIGHT?
YEAH

HOW DO I INTER. CRDS?
***USE INTER.

HOW DO I LIST CDS.
***USE LIST.

WHAT PROGRAMX AVAILABLE?
*A*LIST, DUP, AND INTER.

WHAT DOS DUP DO?
***DUPLICATES CARDS.

HOW DO I DUPLLMATE CRDS.?
***USE DUP.

HOW DO I INTERPRETARE CRDS.1
***USE INTER.

WHAT DO INTER DO
***INTERPRET CARDS.

HOW DO I LST CRDS?
***USE LIST.

WHAT DOES LIST DO????
***LISTS CARDS.

WHAT DEOS INTRE DO?
***INTERPRET CARDS.

HOW DO I SIGN OFF.
***HIT CARRIAGE RETURN!!

At the heart of the adaptive query program is an algorithm for evaluating the similarity of
two character strings. This algorithm was developed by G. L. Rouse, D. C. Gause and the author.
An application for a patent has been made. A description of the algorithm is now given. Call the
character strings to be compared A and B. Then:

St22 1:

Form a matrix, N, by assigning a 1 to M[I;J] if and only if A[I] = B[J].
Otherwise M(I;J] is set to 0; This matrix is formed by the following APL
expression: 1E--A c . = B. For example, if A "ANNE' and B 'ANNIE' then N is:

ANNE
A 1 0 0 0

N 0 1 1 0

N 0 1 1 0

I 0 0 0 0

0 0 0 1

Step 2:

If a row or a column of N contains more than one 1, then retain only the one
closest to tha main diagonal; the following APL expression does this:

M+N=0((pB),pA)P(x/pM)pSS+0=SS+11(N-1-Mx1000-1(1pA)0.-IpB)

Note that if two l's are equidistant fromthe diagonal, the expression wouldretain both.

From the preceding example we woald get:

M = 1 0 0 0

O 1 0 0
O 0 1 0
O 0 0 0'
0 0 0 1

Step 3:

Consider the l's in N as points on an XrY coordinate system. That is, if1[I;J] is equal to 1 then we have a point with the Y- coordinate equal to I, and
the X-ccoordinate equal to J. The APL expression for this is:

X+D/(S-4-PD+,M)P1PP
Yq-D/,0((pB),pA)pSplpA

From the preceding example we would get:

X

Step 4:

The standard correlation coefficient (which measures linear dependence) of thepoints is taken as a measure of similarity betveea the two strings. The closerto 1, the greater the similarity, the closer to -1 the greater the difference.
The following APL expression evaluates the standard correlation coefficient:

CC-4--((Nx+/XxY)-X1xY1)=(((Nx+/Y*2)-(Y1++/Y)*2)*0.5)x((Nx+/X*2)-(X1++/X)*2)*0.5

For example, conZider the results of applying this algorithm to determine the similarity of thequestion 'WHAT IS TODAY?! with several other phrases:

152

Phrase Correlation Value

WHAT IS TODAY 1.00
WHTA IS TODAY 0.994

WHAT IS TODAY 0.997

WHAT IS TDAY? 0.997

WHAT TODAY 0.97

WHAT DAY 0.92

TODAY IS WHAT -0.05

YATOD SI TAHW -0.36

MY NAME IS ED 0.001

With this algorithm in hand, the implementation of the Query System is fairly
straightforward. A table is kept of questions seen and their associated answers. Associated with
each question is a threshold which the correlation value must exceed in order for verification
not to be requested. This verification threshold is adjusted so that verification is not
requested more than once for any given input question. Also associated with each question is a
threshold value which thecorrelation-Value must exceed for the question to be considered a

match. When a new question is entered, a correlation value between that question, and all the
questions in the table is computed. Only questions whose correlation value is higher than the
associated threshold value ire considered as candidates. Amongst the candidates, the one with
the highest correlation value is chosen, and the answer associated with that question is given.
If the answer given turns out to be incorrect, the threshold value associated with the selected
question is raised to be slightly higher than the correlation value obtained for that question,
thus insuring that the question would not be a candidate when the same question is posed to the
sytem. Also, the new question is stored and the prograTfasks asks what the correct answer to it
should be, thus, another entry into the question-answer table is made. The threshold initially
associated with a new question is set to a "low value."

The attached flowchart gives a more detailed description of the program.

Note that this adaptive qiey system has many applications; some possible .uses-include:

- allowing CAI (computer aided instruction) users to ask questions, at any point,
about the subject being_

- questioning a system (such as APL) to find the type and use of available
commands, and

- ipt.Oring simple spelling errors in compilers.

2 A
z

GO

O
E
O

o
!S-10.

cr_s

z
z

r ---1

153

MICROPROGRAM TRAINING AN APL APPLICATION

Ray Polivka and Kent Haralson
IBM Corporation

Poughkeepsie, New York 12601

Introduction: Nature of Microprogramming

When given a. computer system, probably the first thing a user looks at is the instructionset. This information is usually found in a Principles of Operation manual. Here also residesthe architectural flavor of the system. Nov move from the user of a computer system to theimplementors of a computer system. At what do they look? Certainly they must understand theinstruction set and architecture. But, in addition, they need to know the nature of the hardwarewith which they have to work. They must know such things as the functions which can be executedby the Arithmetic and Logic Jnit and how data can flow between the storage registers that makeup the hardware of the computer. All of this information in great detail is founa in thefunctional specification of the computer system. Much of this information is representedgraphically as a data flow. It describes how data can move within the hardware that comprisesthe computer system.

The computer system can not yet operate since a very important item, the element of time,is missing. The determination of when data should move within the data flow makes up what isreferred to as control design. The specification of these controls for a data flow is a veryintricate and involved affair. Microprogramming is one technique of control design. One of itssalient features is that all the control information is stored in an orderly fashion as anarray. This array is referred to as a control store. Information is selected from control storea small portion at a time. This portion, called a microinstruction, contains the informationnecessary to control the data flow for a small period of time, usually 'a machine cycle.

Objective--

The use of microprogramming has grown quite rapidly over the past few years. This in turnhas produced a corresponding increase in interest in micropragramming. SDD Programming Educationhas developed a course in microprogramming which presents tn_a_student_the-concepts-and--funa,,,,at... principles underlying -1ictoprograining.'Idaddition to such concepts and principles,it is highly desirable that the student actually do some microprogramming. This requirement wasnet by developing an interactive APL simulation package. This package is based upon ahypothetical machine developed by C. W. Gear in his textbook Computer Organization andPragramming. Here we.have a well defined architecture with,-a -data- flu:- aui4yu to bereaListic and yet simple enough to avoid unnecessary confusion over details. With this packagethe student is able to develop and execute both machine and micro code. The APL in which it wasdeveloped is transparent to the student.

This package is used in conjunction with printed material presented during the course. Itconsists of' (1) A Principles of Operation manual (6 pages), (2) A User's Manual (7 pages), and(3) A Microprogramming Manual (25 pages). The Principles of Operation manual describes thearchitecture of the machine and its instruction set. The User's manual defines the nature of theassembly language. Finally, the Microprogramming manual contains the data flow and accompanyingdescriptive material as well as the microprogramming language in which to write the micro-code.

Usage

Ho knowledge of LPL is necessary. Initially the student need type only three keywords, IPL,TESTI, and START, to have a complete simulation of the execution of three machine instructionsand its supporting microcode. In this way the student can become familiar with the mechanics ofthe package. Figure 1 contains the data flow which is simulated. Figure 2, illustrates thesequence of events that °czar when the three keywords are entered. When he has familiariazedhimself with the procedure, he has available another package TEST2 which he may use. Thispackage loads memory with a small assembly program, -but he must provide the supportingmicroprogram. The nature of T-ESTI and TEST2 are described in EXPLAIN1 and EXPLAIN2,respectively. From this point he should be able to generate both assembly instructions and thesupporting microcode. Figure 3 portrays a sequence of assembly instructions as entered on theterminal. Figure 4 illustrates the input of a set of microinstructions as well as three assemblyinstructions. Note that it als3 illustrates some of the diagnostics that the user, can get.. Thefacilities available to the student can be subdivided into three parts. The first part consistsof the functions which simulate the machine definition. The second part consists of thosefunctions which initialize or reset memory and control store. The third part consists ofextensive diagnostic aids. With these aids he has the ability to dump.portions of both control

154

U 31

Figure i Data Flow

155

I
P
L

,
.
.
1
.
S
T
E
M

R
E
S
E
T

I
S

C
O
M
P
L
E
T
E

T
E
S
T
I

S
T
A
R
T

W
H
A
T

I
S

M
g

S
T
A
R
T
I
N
G

P
O
I
N
T

I
N

M
A
I
N

M
E
M
O
R
Y

(
R
A
S
E

1

I
N
D
E
X
I
N
G
)

,

M
:

-

1
'

M
A
R
=

0

M
D
R
=

0

A
=

0

X
=

0

S
T
K
=

1
0
1

C
C
=

0

M
A
C
H
I
N
E

C
Y
C
L
E
S

U
S
E
D

1

6
=

0

I
R
=

0

U
-
I
N
S
T
R

E
X
E
C
U
T
E
D

1
A
D
D
'

Z
E
R
O
,
C
C

,
M
A
R
,
R

M
A
R
=

1

M
D
R
=

4

A
=

0

6
=

0

-
X
=

0

S
T
K
=

1
0
1

C
C
=

1
I
R
=

0

1

M
A
C
H
I
N
E
.

C
Y
C
L
E
S

U
S
E
D

M
-
I
N
S
T
R

E
X
E
C
U
T
E
D

2
A
D
D
!
!

O
N
E

,
C
C

,
C
C

,
P

M
A
R
=

1

M
D
R
=

4

A
=
,

0

6
=

0

X
=

0

S
T
K
=

1
0
1

C
C
=

2
,
I
R
=

0

2

M
A
C
H
I
N
E

C
Y
C
L
E
S

U
S
E
D

M
-
I
N
S
T
R

E
X
E
C
U
T
E
D

3
A
D
D
?
!

M
D
R

,
Z
E
R
O
,
I
H

,
P

1
R
E
A
D

0
0

1
4

2
R
E
A
D

0
0

1
5

3
L
O
A
D

0
0

1
3

4
L
O
A
D

0
0

1
5

5
1
,
0
A
0

0
0

1
4

6
L
O
A
D

0
O

1
4
'

7
A
D
D

0

8
-

S
U
R

0

9
A
D
D

0
1
0

S
T
O
R
E

0
0

1
6

1
1

W
R
I
T
E

0
0

1
6

1
2

S
T
O
P

0

1
3

C
O
N
S
T
A
N
T

2

1
4

C
O
N
S
T
A
N
T

0

1
5

C
O
N
S
T
A
N
T

0 F
i
g
u
r
e

3

I
P
L

S
Y
S
T
E
M

R
E
S
E
T

I
S

C
O
M
P
L
E
T
E

1
A
D
D
M

Z
E
R
O
,
C
C
,
M
A
R
,
R

2
A
D
D
,
'
!

O
N
E
,
C
C
,
C
C
,
P

3
A
D
D
M

'

N
f
l
a
,
Z
E
R
O
,
I
R

E
N
C
C
-
f
R
E
C
T

N
U
M
B
E
R

O
F

F
I
E
L
D
S

3
A
D
D
!
!

N
D
R
,
Z
E
R
O
,
I
R
,
P

T
2

6

T
I

3
2

6
A
R
O
M

7
T
1

8
A
D
M
.
:

X
,
D
,
B
,
P

9
T
O

1
2

1
0

A
D
D
M

Z
E
E
0
,
1
3
,
M
S
R
,
R

M
L
W
E

E
R
R
O
R

1
0

A
0
0
.
4

Z
E
R
0
,
8
,
1
1
S
i
1
,
R

A

1
0

A
D
I
D
1

Z
E
R
O
,
B
,
M
A
R
,
R

1
1

T
I
E
!

6

1
2

T
I

6
4

A
R
=
.

3

U
D
R
=

7
3
8
1
9
7
5
0
4

A
=

0
0
=

5

4
4

T
R
N

1
4
8

X
=

0

S
T
K
=

9
9

C
C
=

4

1
1
1

=

1
2

6
4

T
E
l
!

9
5

3
1

M
A
C
H
I
N
E

C
Y
C
L
E
S

U
S
E
D

,
.

0
5

A
D
D
M

Z
E
R
O
,
B
,
M
A
R
,
R

9
6

A
D
D
M

M
O
N
E
,
S
T
K
,
S
T
K
,
P

:
.
.
!
-
I
N
S
T
R

E
X
E
C
U
T
E
D

5
7

A
D
D
M

Z
E
1
1
0
,
3
T
K
,
M
A
R
,
:
l

4
4

T
R
:
4

1
3

9
8

T
;
?
:
4

1

I
O
D

O
F

J
O
.
'
!

*
*
*
*
*
r
n

T
I
M
E

U
S
E
D

=

3
2

M
A
C
H
I
N
E

C
Y
C
T
,
D
S

1
4
8

S
T
O
P
M

0

1
L
9
A
d

0
0

3

2
S
T
O
P

0
3

'
Z
i
I
I
J
T
A
i/
T

7

F
i
g
w
(
'

2

F
i
g
u
r
e

4

S
E
T
T
R
A
C
7

'
U
T
E
R

C
T
L

S
T
O
:
?
7
;

L
O
G
S
.

T
O

B
E

T
R
A
C
E
D

'
A
L
L
'

O
R

'
N
O
N
E
'

A
R
E

A
C
C
E
P
T
A
B
L
E

N
O
N
E

S
T
A
R
T

W
H
A
T

L
S

-
T
H
E

S
T
A
R
T
I
N
G

P
O
I
N
T

I
N

M
A
I
N

M
E
M
O
R
Y

(
B
A
S
E

1

I
N
D
E
X
i
N
a
)

E
N
D

O
F

J
O
B

*
*
*
*
*
*
*
*

T
I
M
E

U
S
E
D

=

1
9

M
A
C
P
I
N
E

C
Y
C
T
P
S

.
0
0
0
0
0
0
0
0
0
1
1

'
1
0
0
0
0

S
E
T
T
R
A
C
E

E
N
T
E
R

C
T
L

S
T
O
R
E

L
O
O
S
.

T
O

B
E

T
R
A
C
E
D

'
A
L
L
'

O
R

'
N
O
N
E
'

A
R
E

A
C
C
E
P
T
A
B
L
E

U
:

A
L
L

I
N
D
I
C
A
T
E

N
A
T
U
R
E

O
P

T
R
A
C
I
N
G

0
C
T
L

S
T

L
O
C
,

T
H
E
N
,

R
E
G
S

1
C
T
L

S
T

L
O
C
,

N
E
M
.

2
:
C
T
L

S
T

L
O
C

2

H
E
L
P

P
.
:
O
C
E
S
S
I
D
O

C
N
T
I
.
:
L

I
N
S
T
R
.

1
4
9

A
N
D

.
"
.
!
E
:
.
,
Y

h
O
C
A
T
T
O
:
:

3

C
W
I
T
E
W
T
S

A
L
;

M
A
R
=

2

1
:
D
R
,

7
V
)
1
9
7
5
0
4

A
=

0

B
.

3

Z
=

0

1
:
T
i
:
=

1
(
1
0

C
C

3
I
R
=

1
2
.

1
9

1
.
;
A
C
i
i
i
i
'
i
E

C
Y
c
f
!
'

Y
h
E

C
N
T
R
I
;
I
N
S
T
R
U
C
T
I
O
N

I
S
:

S
T
A
R
T

T
H
E
'

S
T
A
R
T
I
N
G

P
O
I
N
T

I
N

M
A
I
N

M
E
M
O
R
Y

(
B
A
S
E

1

T
R
D
E
Z
T
N
G
)

.

1

1 2 3 6 7 9 1
2

6
4
9
5

9
6
9
7

D
8

1 2 3 4 5 4
4
1
4
8

E
N
D

O
F

J
O
B

*
*
*
*
*
*
*
*

T
I
M
E

U
S
E
D

=

1
9

l
!
A
C
H
I
N
E

C
Y
C
L
E
S
.

T
Y
E

C
U
R
R
E
N
T

W
O
R
D

I
i
:

!
-
:
L
:
N
R
Y

Y
O
U

A
R
E

P
R
O
C
E
S
S
r
N
O

T
S
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

T
N
E

T
O
P

T
H
E

S
T
A
C
K

1
S
:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

D
I
S
P
L
A
Y

.
'
C
O
D
E

S
T
A
R
T
I
N
G

P
O
I
N
T

n
: S
T
O
P
P
I
N
G

P
O
I
N
T

3

A
D
D

;
4
E
)
.
?
0
,
C
C

A
D
D
M

O
P
E

,
C
C

,
C
C

'

3
4
D
D
:

P
D
)
'

,
Z
E
R
O
,
I
E

D
I
S
P
b
A
y

S
T
,
I
R
T
I
N
O

P
O
I
N
T

3

S
T
O
P
P
I
N
C

P
o
r
n
.

3 :
'
T
N
A
R
y

N
O
T

P
E
X
A
D
E
C
I
M
A
L

N
O
T
A
T
I
O
N

3
0

0
0
0
0
0
0

.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

0
0
0
0
0
0
0
7

F
i
g
u
r
e

5
F
i
g
u
r
e

6

memory and main memory and to selectively trace the execution. Figure 2 illustrates an execution
with a full trace. Figure 5 shows the nature of trace selection. In Figure 6 we see two more
diagnostic aids, HELP and DISPLAY. HELP yields a snapshot of the pertinent iperrts ot the data
flow. It is useful when the microprogram goes awry. DISPLAY allows one to dis?Ziel either main
memory or control store. Control store is displayed mnemonically and main ordamazy is displayed
in binary and hexadecimal notation-

Techniques Used

This package was developed using-the APL/3.6D KM-6 release; it resides r ^am pleko ly within a
32K workspace. The ley function im the START function. It is the embodiMent ot.r. the aiven data
flow. The timing of evehts is incorporated in the sequence that the actions area performed in it.
The function is written deliberately in a vertical fashion- This was done in cri er that the
changes that a studgRa might like to make for CM1',4 data flow could b acc,nplisIv,A easily. The
START function steps sI iLt y tnzmilligh a binary array called MCODE. MCIIDE is the control
store in which 'e4iCh :row is a anicroinstruction. The sequence of micoinsttuctions chosen from
mrOolm is controlled by another binary array MEMORY. In MEMORY resides the binary representation
of the machine instructions. Again each row contains one machine instruction.

Building these binary aatrices is no more palatable than writing progt4. in binary. A
standard assembler approach provides a mnemonic means of creating the proper 1,Ats, 'Iatterns. Thus
each machine instruction is implemented as a dyadic fAifiction. The nalve of it 6atc*,:,-,:4. the name ot
the instruction. Thus for

LOAD 0 '0 15

which is a machine instruction, LOAD is, in APL, a dyadic function. Its right argument is a
three component vector defining the nature of the effective address. The first and second
components are binary and define whether indirect addressing or indexing is to Occur. The third
component is an absolute address component. The left argument is the dhsoluto &4dress in MEMORY
which will contain the binary configUration generated by the mnemonic instruni,

The microinstructions for this machine at-0 in either or two f..ze, the data flow
controlling form and the segnen00 CNOArolling, form,, sAte figure 7. For the data flow controlling
microinstructions *4.4 IbUction permitted in the function field is implemented as a
dyadic function. Its left argument Is again the absoluteed_dress_in_MCODE_which_mill_contain_the_
generated bit configuration. -Its right argument is a four component vector which corresponds to
the -- other four fields in the microinstruction. The general form is

Loc ECM Inl, In2, Output, Memory

All the components of the right argument may be written mnemonically. For example, to add the
contents of register I to the contents of register B, put the result in register MAR, and
finally issue a read of aemory.would appear as

7 ADDM X,B,MAR,R

The sequence controlling microinstruction is also a dyadic function. The name of the
function matches the mnemonic for the test condition. Its left argument is the absolute address
in MCODE for the generated bit configuration. Its right argument is the absolute address in
MCODE of the next microinstruction to be in control. For example the microinstruction

7 TRH 64

when executed causes an unconditional transfer to the microinstruction in control store location
64.

This technique while not elaborate proved quite adequate. If an error were made in either
an instruction or a microinstruction, correction simply consists of reentering it. Occasionally
this was hard to grasp by an experienced programmer since he expected something .,tore involved.
If the user is a knowledgable AFL user, he may use the defined function facility of M?L as an
assembler. Instead of entering the instruction individually, they may be collected txgether as a
niladiC function. For example,

158

0 3 6 9 13 15

0 4 15

DATA LOW CONTROL

OUTPUT (3 BITS)
"UNCTION (4 BITS)
/72- (3 BITS)
IN1 (3 NITS)
EMORY (2 BITS)

1. 3 MAC71IN:.7 INSTR.
32 CNTRL INSTR.
(RUN ON CP-67)

2. 42 MACHINE INSTR.
559 CNTRL INSTR.
(RUN UN CP-67)

3. 3 MACRINE INSTR.
32 CNTRL
(RUN ON MOD 85)

Figure 7

SEQUENCE CONTROL

BRANCH ADDRESS
(12-BITS)

TEST CONDITION
(3 BITS)

FULL TRACE PARTIAL TR.* NO TRACE

CLOCK
CPU

CLOCK
CPU

CLOCK
CPU

16

7

MIN 35
17.25

ff111 55

1.5

SEC
SEC

SEC
SEC

1

28
1

MIN 45 SEC
5.5 SEC

MIN 52 SEC
MIN 35 SEC

30.5 SEC
.917 SEC

29
4.25

2 MIN 33
1 '!IN 6

20.25
.883

SEC
SEC

SEC
SEC

SEC
SEC

* JUST CONTROL STORE LOCATIONS DISPLAYED

Figure 8

159

is

7EXA:IPLE

[1] 3 LOAD 0 1

[21 4 TORE 0 0 39

V

Changes to programs then can be made via the editiRg facilities of APL. A word of caution
though, this does tend to fill up the workspace.

Timing and EffoRt

This training package was essentially written in about 100 man hours over a period of three
weeks. Many improvements were suggested and even made by students as they used it. This proved
to be very valuable input.

Since several levels of simulation are involved, the execution time for the individual
machine instructions are inherently slow. Figure 8, contains some sample times. The first and
third cases exercise the microcode to execute two LOADS and a STOP. The second case exercises
all the microcode to execute all but one of the machine instructions at least once.

Projections

This package can serve as a ready foundation for further modifications and extensions. For
example several additional instructions could be added to the repertoire of the machine. Or one
could make changes in the data flow. The addition or deletion of registers and modifications to
the data paths are possibilities. The timing with respect to memory references could be made
more realistic. A more ambitious undertaking would be to treat this data flow or subset as an
I/O control unit. With two such versions, one an I/O control unit and one a CPO, dynamic
interaction could-occur.

Summary

This package has been successfully used to introduce the concept of microprogramming. It
enables a student to actually write and execute microcode in an interactive environment. This
leads to a proper appreciation of what is involved. The package appears readily extendable
offering several avenues to follow.

A technical report containing complete student manuals is currently being written and will
be available from the authors.

REFERENCE

1. Gear, W., Computer Onapization and. Programming, McGraw-Hill, 1969.

160

F.CAPL

AN APL ELEC7RONIC CIRCUIT ANALYSIS PROGRAM

Randall W. Jensen, Jerry A. Higbee and Paul M. Hansen
Electronic Design Associates

1536 east 1220 North
Logan, Utah 21

Management Systems Corporation
15 North West Temple

Salt Lake City, Utah 44103

ECAPL (APL Electronic Circuit Analysis. Program) is an Interactive integrated system ot
programs developed by 'Randall 4. Jensen, Terry A. Higbee, and Paul M. Hansen of Electronic
Design Associates for Management Systems Corporation, 15 North West Temple, Salt Lake City, Utah
94103. The programming system was developed primarily to aid the electrical engineer in the

design and analysis of electronic circuits. The system's capabilities are similar to those ot
the IBM/360 ECAP[1] program, however, the techniques used to perform the analysis are different.

The user familiar with ECAP will have little difticulty making the transition to ECAPL.

The ECAPL system consists of four clsely related programs.

Input Language: This program acts as the communication link between the user and the three
analysis programs. The interactive language is user-oriented and allows complex circuits to
be simply described to the computer. The four basic types of statements used in the program
Completely define the topology of the circuit, the circuit element values, the type of

analysis to be performed, the driving functions, and the output required. Each input
statement is analyzed when entered for validity and syntax so that the user is completely
isolated, from the APL system. Comprehensive diagnostics are supplied to aid input
debugging. These features make it possible to learn to use ECAPL in a short time.

DC Analysis: The dc analysis program obtains the dc or steady-state solutions ot linear
electrical networks ani provides the worst-case analysis, standard deviation (statistical)

analysis, and sensitivity coefficients it requested. This program also provides an
automatic_parameter,and_topology-modificition capability. /

AC Analysis: The ac analysis program obtains the steady-state solution ot electrical
networks subject to sine-wave excitation at an arbitrary fixed frequency. Since this

program also contains tae automatic network-modification capability, it is easy to obtain'
frequency and phase-response solutions.

Transient Analysis: The transient analysis program provides the time-response solution of
linear or nonlinear electrical networks subject to arbitrary, user-specified driving

functions. Nonlinear elenents are modeled by using combinations of switches and resistors,
capacitors, or inductors to provide piecewise linear approximations to the nonlinear

characteristics.

ECAPL is not difficult to use. It is not necessary for the user to have any knowledge of
APL or of the internal mechanics of the ECAPL system and he needs no prior computer or

programming experience. However, he must know the techniques ot communicating with the computer
via ECAPL. These include (1) the means of converting the circuit schematic to a written format

acceptable to the program., (2) the information required to obtain the desired analysis, and (3)
the knowledge to interpret the output results. The techniques involved in using ECAPL are easily

learned by an electrical engineer because ECAPL's input language and its outplit are written in

electrical circuit terminology.

The ECAPL input data provides information describing the interconnection of the branches,
the types of elements, their values, tolerances, gains, inductive couplings, initial conditions,

and dynamic changes in their values. There are only eight different data card types required to
provide thiis information: passive branch data, current gaih or transconductance, mutual

inductive coupling, switches to provide dynamic changes, independent voltage and current
sources, and three types of tine-dependant sources. The eight types of data cards specify the

element values in a ."standard" branch.

The standard branch shown in Figure 1 is the basic building block of. ECAPL. It consists of
a nonzero passive element; R, ;, L, or C. In addition, it may include a voltage source E and/or

a switch A in series with the element and/or an independent current source I in .parallel. It may
also contain any number (200) of dependent current sources i, as shown, in parallel with the

element. The positive current directions and voltage polarities are shown in the figure.

161

0)-S,

e

va

00

1I

i.
Ns*\

i')

%..
-

'
5.0

.-os

.1._

K

,

/
Al

...

1:1et

Besides the branch data statements, ECAPL also includes two additional types of input

statements; command and control. The command statement EX or EXECUTE signals the ,end of the

input data and causes the analysis to begin.

Solution control statements are of two types. The first contains data'of a general nature

that pertains to the analysis of a circuit(e.g., frequency, time step, etc.). The second type

specifies calculations to be made, other, than a nominal solution (e.g., sensitivity

coefficients, worst case, etc.). The page control (PC) output control statement is a special

form of solution control statement which stops the analysis atter each block of output to allow

the user to insert a new sheet of paper in the terminal. The analysis is reactivated by

depressing the carriage return key_

The statement formats for dc analysis, ac analysis and transient analysis are summarized in
Figure 2.

163

=

S
T
A
T
E
M
E
N
T

T
Y
P
E

S
T
A
T
E
M
E
N
T

F
O
R
M

D
E
F
A
U
L
T

V
A
L
U
E

C
O
M
M
A
N
D

,

E
X
I
E
C
U
T
E
1

D
A
T
A

P
A
S
S
I
V
E

(
R

I

I
G

b
,
n
i
)
.
n
f
=
P
1

T

I
C
'
)

D
E
P
E
N
D
E
N
T

-
C
U
R
R
E
N
T

S
O
U
R
C
E

{
B
I
E
T
A
1
1

G
M

(
n
,
b
.
c
)
.

t
=
P
i

I
N
D
E
P
E
N
D
E
N
T

S
O
U
R
C
E

f
E

1

-
-
h

=
P
1

S
O
L
U
T
I
O
N

C
O
N
T
R
O
L

W
O
R
S
T

C
A
S
E
1
,

1
1
6

S
E
[
N
S
T
T
I
V
I
T
I
E
S
1

S
T
I
A
N
D
A
R
D

D
E
V
I
A
T
I
O
N
S
]

1
E
[
R
R
O
R
]
=
P

S
R
[
O
R
T
]
=
P
4
'

o
p
i
p
m
=
p
4

r
1
.

(
1
0
1

o
.
q
i

1
0
'

O
U
T
P
U
T

C
O
N
T
R
O
L

P
C

F
i
r
m
i
r
e

2
(
a
)

D
C

A
n
a
l
y
s
i
s

S
t
a
t
e
m
e
n
t

F
o
r
m
a
t
s

S
T
A
T
E
M
E
N
T

T
Y
P
E

S
T
A
T
E
M
E
N
T

F
O
R
M
,

C
O
M
M
A
N
D

E
X
J
E
C
U
T
E
I

O
F
F
A
U
L
T

V
A
T
E

D
A
T
A

P
A
S
S
I
V
E

f
RG

i

b
,
n
i
-
,
l
i
f
=
1
?

L C

D
E
P
E
N
D
E
N
T

C
U
R
R
E
N
T

S
O
U
R
C
E

1

I
N
D
U
C
T
I
f
r
E

C
O
U
P
L
I
N
G
.

=
p
2

M

b

1
2
=
P

2

I
N
D
E
P
E
N
D
E
N
T

S
O
U
R
C
E

1

r
E

t
I

b
=
P
3

S
O
L
U
T
I
O
N

C
O
N
T
R
O
L

1
E
[
R
R
O
R
]

=
P
4

0
.
0
0
1

O
U
T
P
U
T

C
O
N
T
R
O
L

P
C

i
f

F
i
4
u
r
e

2
(
h
)

A
C

A
n
a
l
y
s
i
s

S
t
a
t
e
m
e
n
t

F
o
r
m
a
t
s

S
T
A
T
E
M
E
N
T

T
Y
P
E

S
T
A
T
E
M
E
N
T

F
O
R
M

D
E
F
A
U
L
T

V
A
L
U
E

i

C
O
M
M
A
N
D

E
M
E
C
U
T
E
]

'

D
A
T
A

P
A
S
S
I
V
E

L
{
T

I
D
,
r
1
1.
4
.
n

=
7
3
5

'

.

C

D
E
P
E
N
D
E
N
T

C
U
R
R
E
N
T

S
O
U
R
C
E

B
(
E
T
A
1

l
,
M

n
,
h
t
4
-
1
3
t
=
P
5

S
W
I
T
C
H

S
W
n
,
b

{
1
+

}

P
5

D
C

S
O
U
R
C
E
S

&

I
N
I
T
I
A
L

C
O
N
D
I
T
I
O
N
S

i
0

.
=

P
4

P
-

T
I
M
E
-
D
E
P
E
N
D
E
N
T

S
O
U
R
C
E
S

N
o
n
n
e
r
i
o
d
i
c

P
e
r
i
o
d
i
c

S
i
n
u
s
o
i
d
a
l

(
E
1
'

I
f
T
b
,
P

6

E
l

n
S
b
,
n
e
r
i
o
d
,
n
e
a
k
,
d
c
,
t
o

F
i
g
u
r
e

2
(
c
)

T
r
a
n
s
i
e
n
t

A
n
a
l
y
s
i
s

S
t
a
t
e
m
e
n
t

F
o
r
m
a
t
s

(
1
/
2
)

c2

S
T
A
T
E
M
E
N
T

T
Y
P
E

S
T
A
T
E
M
E
N
T

F
O
R
M

D
E
F
A
U
L
T

V
A
L
U
E

S
O
L
U
T
I
O
N

C
O
N
T
R
O
L

E
Q
[
U
I
L
L
I
B
R
T
U
M
1

T
I
N
E

-
S
T
E
P
]
P
4

1
.
0

l
E
[
R
R
O
R
1
=
P
4

0
.
0
0
1

2
E
I
R
R
O
R
3
=
P
u

0
.
0
0
1

O
U
I
T
P
U
T

I
N
T
E
R
N
i
A
L
]
=
P

1

I
N
I
T
I
A
L

T
I
M
E
i
=
P
,

0
.
0

F
I
[
N
A
L

T
I
M
E
J
=
P

0
.
0

S
H
[
O
R
T
]
=
P
4

0
.
0
1

O
P
(
E
N
)
=
P

1
0
7

C
O
[
N
T
I
N
U
]

S
O

[
U
R
C
E

I
N
C
R
E
M
E
N
T
I
=
P

Li

1

O
U
T
P
U
T

C
C
N
T
R
O
L

P
C

F
i
g
u
r
e

2
(
d
)

T
r
a
n
s
i
e
n
t

A
n
a
l
y
s
i
s

S
t
a
t
e
m
e
n
t

F
o
r
m
a
t
s

(
2
/
2
)

P
4

1
2

3
P
7

V
a
l
u
e

N
o
m
i
n
a
l

(
d
e
c
i
m
a
l

t
o
l
e
r
a
n
c
e
)

N
o
m
i
n
a
l

(
m
i
n
;

m
a
x
)

M
i
n

(
i
n
c
r
e
m
e
n
t
)
`
.
,

r
t
a
x

V
a
l
u
e
/
P
h
a
s
e

M
i
n

(
i
n
c
r
e
m
e
n
t
)

m
a
x
/
p
h
a
s
e
m
i
n
,
'

p
h
a
s
e
m
a
x

v

V
a
l
u
e
2
)

.
V
a
l
u
e
,

v
a
l
u
e
,

.
.
.
,

v
a
l
u
e

1

L

a
n
d

C

v
a
l
u
e
s

a
r
e

r
e
p
l
a
c
e
d

b
y

S
H
O
R
T

a
n
d

O
P
E
N
,

r
e
s
p
e
c
t
i
v
e
l
y

1
i
n
d
i
c
a
t
e
s

o
p
t
i
o
n
a
l

i
n
f
o
r
m
a
t
i
o
n

i
n
d
i
c
a
t
e
s

o
n
e

e
l
e
m
e
n
t

o
f

t
h
e

g
r
o
u
p

m
u
s
t

b
e

s
e
l
e
c
t
e
d

b
,

b
1
,
b
2

=

b
r
a
n
c
h

n
u
m
b
e
r

n

=
.
s
e
r
i
a
l

n
u
m
b
e
r

1
.
=
i
n
i
t
i
a
l
.
n
o
d
e

n
f
=

f
i
n
a
l

n
o
d
e

b
f
=

"
f
r
o
m
"

b
r
a
n
c
h

b
t
=

"
t
o
"

b
r
a
n
c
h

F
i
g
u
r
e

2
(
e
)

P
a
r
a
m
e
t
e
r

V
a
l
u
e

F
o
r
m
a
t
s

When the EX command at tie end of the circuit description is accepted, ECAPL requests that
the user specify the output desired. The program prints each of the possible output types (e.g.,
NV) to which the user replies with one of the response forms in Table 1.

Table 1 Outnut Descrintors

FORM

numbers

FUNCTION

snecifies node or branch numbers desired
_

e.g. 1 5 7

n
1

snecifies all numbers from n to n inclusive

-n deletes number n from outnut list

deletes all numbers from n to n .inclusive-n
1

n
2 front the outnut list

0 deletes all nrevious numbers prior to 0,
1 3 7.0 2 4 snedifies numbers 2 and 4 only.

continuation mark to allow numbers to he continued
on next line.

carriage no outnut desired

For example, a resnonse to the" -outnut tune 717 mirrht be 1 :5 ")..--->15

-11 would reouest_.:element voltages 1,.5, 9; 1n, 12, 13i 14, and

15.

The use of ECAPL is best Alitistrated with a series of examples. These examples demonstrate
tha interactive procedure and the simplicity of the input language. The first example is a dc

Analysis of the two -stage amplifier shown in Figure 3rapresented by the equivalent circuit
shown in Figure 4.

The user requests an ECAPU -analysis -by-typing-t-he-statememt-ECk-folIowed -by-a carriage
return..The system replies with SPECIFY TYPE-OF ANALYSIS to which the user 'responds either DC,

AC, or T. In this case thr4 response was DC. Next, the circuit description is entered as shown
in Figure 5. The command F(O. the end of circuit description informs ECAPL, that the circuit
data is complete. The syst responds with the number of nodes and branches used in the circuit
and a request for the outputs desired. Each output variable is typed by ECAPL and the user must

respond with a carriage return (no output) or a specification as 'described in Table 1.

At the end of the output requests the system dictates the commands to load the appropriate
analysis package. A circuit modification (paraxeter or topology) can be performed at the end of

each analysis by reloading the language module, entering the modifications, and loading the
analysis module as shown in Figure 5-9.

169

-3
0v

O
U
T
P
U
T

I
N
P
U
T

F
i
a
u
r
e

3

T
H
O
-
S
T
M
;
E

T
R
A
N
S
I
S
T
O
R

A
M
P
L
I
F
I
E
R

F
i
r
T
u
r
e

4
T
W
O
-
S
T
A
(
1
1
1

E
n
U
I
V
A
L
T
3
N
T

C
I
R
C
U
I
T

Examples of the ac analysis and transient analysis capabilities are illustrated in Figures
6 through 9 respectively.

172

SPECIFY TYPE OP AYALYSI3

DC---TEST PRODLE7J (DC ANALYSIS OF TWO STAGE ANPLIFIER)

ENTER CIRCUIT p,ocRAP4,0:,

R1,041=5.6E3(.05)
R2,241=810
E2=-.7(-. P,-.5)
R3,045=2(.05)
54,8+2=220(.05)
R5,143=5053(.05)
R6,345=1253(.05)
R7,443=342

R8,0+4=1E3(.05)
R9,447=50E3(.05)
R10,745=1E3(.05)
R11,540=.1
511=30(.08)
512,144=22E3(.05)
R13,841=1
514 ,0+8r1!6
B1,245=60
R2,7+9=60
B3,13414=0
SE
WO
PC
EX

110, OF BRAPCFES: 14
NO, OF NODES: 8

SPECIFY OUTPUT DESIRED

NV
1+8
EV
1414
EC
1+14
BY
1+14
RC
1+14
EP
1t14
MISO
0

TYPE Ti!' COPNANDS:

FIGURE -5-1

)ERASE LANG
)COPY TERPYDC DC
EX

173

DC ANALYSIS

PARTIAL DERIVI7IVES AnD CORFFICTE:ITS

VITH RESPEr:T TO RFSI3TArCES.'
MDT PARTIALS rE55IT7V7TY

BRANCH 1

1 2.41432E05 1.35202E-02
2 2.29332E 05 -1.28426E-03
3 7.36617E04 4.12506F-02
4 _7.32153x_04 4.10006E02
5

_

6.92086E 08 -3.'87558E-06_
6 6.22688E-06 3.48706E 04- _
7 7.53546E 04 4.21985E-02_ _
A 2.41432E 05 1.35202E-03

BRAHCH 2

1

2

3

4

-

5

6

7

8

2.33179E-'
3.45,

.e"(

.o9786E
E1.20511-

1.19885
8.84618E
5.15814F
7.62012' 03
1.9786104E

_
1.13e875r 04
2.70794E-05

-
9.00331E^
8.9110-

" 06
..,d85E 06

8.84618E-_ 06

5.15114E 08
7.62012F-06
1.97851E-37

BRAUCH-1.2

1 6.86271.E-06 1.5099,7,7D3
2 6.51028E-06 1.43402r'-03
3 2.11257E 04

_

_ 4.64765E-02
4 2.100,42E04 4.620921 02
5 1.87226E08 4.11897E/6
6 1.76986E06 3.89370" S4
7 2.04851E04 4.50672E.T2
8 6.86271E06 1.50090ES3

FIGURE 5-4

174

BRANCH 13

1 7.57110E10 7.57130E 12
2 -7.10182R10 7.19181E12
3 2.31003E-08 2.31003E-10
4 2.29603E08 2.29503E-10
5 2.17038E12 2.17038E14
6 1.95275r10 1.95275E12
7 -2.36312E-08 -2.36312.710
8 1.26011E-06 1.26011E-08

BRANCI! 14

1 7.57130E- 10 7.57130E06
2

_ -
7.19182,,, 10

_
7.19182E 06

3 2.31003E-08 2.31003E-04
4 2.29603E-08
5 2.17038E12

_2.29603E_04
2.1 7038E-0

6 1.95275E10
_
1.95275E-806

7 -2.36312E-08 2.36312E-04
8 7.58390E-10 7.58390E-06

WITH RESPECT TO BETAS
.MODE PARTIALS

BETA 1

SENSITIVITY

1 1.62414E-04 9.74415E05
2 1.84607E 04 1.10754E04
3 1.02916E-02 6.17493E-03.
4 1.02293E02 6.13759E-03
5 -9.64719E07 -5.78832E-07
6 -5.01251E-05 3.00751E-05
7 1.05059E02 6.30352E-03
8 1.62414E-04 9.74484E-05

BETA 2

1 4.99734E04 2.99840E T4
2

_
4.79183E-04 2.37510° T4.

3 2.42894E-03
3.03216E03

1.45737E 13
--

1.81928.-, 13
2.82515.°. D7
7.80655 ?15

_4.70859E
1.30109E -04

7 4.9115117-03 2.44F91.713
8 4.99733E04 2.99840E14

FIGURE 5-5

BETA 3

1 7.57130E04 0.00000E00
2 7.19182E04 0.00000E00
3 7.31093E 02 0.00000E00
4 2.29603E-02 0.00000E00
5 2.1703606 0.00000E00
6 1.95275E04 0.00000E00
7 2.36311E02 0.00000E00
8 7.58390E-04 o.000nnoo

WITH RESPECT TO VOLTAGE ,SOURCES
NODE PARTIALS SENSITIVrTY

BRANCH 2

1 8.65085E01 5.05560E-03
2 1.28151E01 8.97057E_04

4.12369E003 2.88558E-02
4 4.09896E00 2.86927E 0.2
5 3.82996E04 --2.68097L 06
6 -3.47990E-02 -2.43572E-04
7

-
4.17401E00 2.92161E 02

8 8.65084E01 6.05559E03

BRANCH.?

1 -2.23968E _02 1.55778E04
2 7.12307E 02 1.48611E 04
3 8.56576E01 5.91603E-03
4 -1.47567E-

_
01 9.97936E 04

5 2.15883E05 1.51118E-07_
6 -5.76449E-03 4.03514E 05
7 1.45525E -

01 1.01867F03
8 -2.23963E02 1.56777E 34

BRANCH 11.

7.2365ur 02 -6.70992E031

-
6.436087032 2.145367 02

3 1.36226E 01 4.08679E02
4 - 1.35519E01 -4.065577-Z2
5 9.99979E01 2.90994E01
6 -5.82515E E-03 1.74754 D3

7 8.61385E_01 2.53415E-01
8 -7.21664E-07 -6.70991E

_
.03

FIGURE 5-6

176

170DE

2

3

4

5

6

7

8

NODE VOLTAGE,r7
UOI,IPAL

-1.26017E00
-5.39041E01
7.57297E00
6.83505E00
2.99991E01
1 01
2.302161'01
1.280 0--

rIPIWUP

1.47646E00
576332P01

-9.21 g53!.'0
8.40754-'700

3.23992701
1.85462E-01

-2.67230F01
1.47645E00

MAXImW!

1.06217E00

_4.17844E 01
6.11464710

-5.47765E00
2.75990701

_1.12352E-01
1.90103701
1.06217E00

BRANCH
HRAPICH

vOLTAGE
VALUE

. .

1.26087E00
2 7.21833E-01
3 1.46362E-91
4 3.92679E01
5 7.03393E00
6 2.24261E01
7 7.37927E01
8 6.82505700
9 1.61965E01

10 6.97752E00
11 2.99991E01
12 5.57417E00
13 1.2C087E06
14 1.26087E00

ELENEYT VOLTAGES
BRANCH YALU?

1 1.26097E00
t

2.18111E-02
3 1.4537:2E01
4 3.92679E-01
5 7.03303E00
6 2.24261E01
7 3.79256P02
8 6.83505E00
9 1.61865E01

10 5.97752E00
11 8,946373-04
12 5.57417-800
13 _1.26037E05
14 1.26037(700

.FIGURE -5 -7

ELM7NT rUP"P7S
BRANCH VALNE

1 2.25156E-04
7 2.69545E05
3 1.784-03
4 1.78490E03
5 1.75735E03
6 1.116185E03
7 1.10896E-04
8 6.83505F-03
9 6.97751-03E

10 6.97752E03
11 8.84537E03
12 2.53371E-04
1.3 1.26097E06
14.. 260.8 7,370

BRANCH CURRENTS
BRANCH VALUE

1 2.25156E-04
2 2.69545E-05
3 1.78490,7-03
4 1.78400E-03
5 1.757955 -03
6 1.86695E03
7 1.10896E-04
8 6.83505E-03
9 6.97752E03

10 6.97752E-b3
8.114637E-03

12 2.5.3371E04
13 1.26087E-06
14 1.25087E06

EL :PENT PO:!ERS
VALUE

1 2.83893E04
2 5.8851'2E07
3 1.61241E-04
4 7.00894E04
5. 1.23653E-02
6 4.19110E:02
7 4.20503E 06
8 4.67178E02
9 1.i2942E-01

10 4.86858E02
11 7.81582E-06
12 1.41234E03
13 1.589110E-12
14 1.580101.-06

SPECIFY TYPE OF A::ALYSIS

MODIFY---UORST CASE CALCULATIOfS PAK. SETA

ENTER CIRCUIT DESCRIPTION

R2=1044
R7=436
P1=79
B2=78
WO
PC
EX

NO. OF BRA11CFr7S. 14
NO. OP NODE.:;: 8

SPECIFY OUTPUT DESIRED

NV
148:
EV
1+14
EC
1+14
BV
1414
BC
1+14
EP
1414
MISC
0

TYPE TNE COI.INANDS:

FIGURE 5-9

)ERASP LANG
)COPY.'TERRYDC DC
EX

DC ANALYSTS (MODIFY)

NODE

1

2

3

4

5

6

7

8

NODE VOLTAGES
NOMINAL

-
1.26954E00
5.47u17-01
7.48791 0_7.487 °1' "i0

6.75108E00

-2.99091E01
1.48637E 01
2.30834E01
1.26954E00

MEUMUM
-
_1.48600E00
6.85477E01
9.13232E00
8.32043E 01-

- 3.23997701

- 1.87758E-01
2.68601E01-
1.48600E00

PAYIMUM
_
1.06996E00

'4.2518'4 01

_ 6.05397E00

_ 5.39911E00
2.7E990E01-
1.146307-01

-1.904E5Eal
1.06996E00

BRANCH VOLTAGES
BRANCN VALUE

1 1.26954E00
7.22120E-01

3 1.46637E-01
3.98782E-01

5 6.9404900
6 2.25119E01
7 7.368315 01
a 6.75108E00
9 1.63323501

10 6.91576E00
11 2.99991E01
12 5.48154E01
13 1.26954E06
14 1.21954E00

ELEMENT VOLTAGES
BRAPCN VALTJ

1 1.26954E00
2 2.21201E02
3 1..48637E01

3.98782E-01
5 . 6.94049'00
6 2.25112501
7

. 3.68315E702
8 '6.75100E00
9 .1.63323E01

10 6.91576E00
11 11.79170E-04
12 '5.48154E0A
13 1.26954E-06
14 1.26954E00

FIGURE 5-10

EL7.:MENT CIIPR7:7T.7

BRANCE

:04
2 2.11878E-05
3 1.81255-Th3
4 1.81165P03
5 1.79146E-03
6 1.87593F.03
7 8.44758E-05
8 6.7518;:'03
9 6.91576E03

10 6.91576E03
11 8.79170E-03
12 2.49161E-04
13 1.26954E06
14 1.26954E06

BRANCH
BRANCH

CURRENTS
VALUE

1 2.267035 Ou
2 2.11878E05
3 1.81265E03
4 1.81965E03
5 1.79145E-03
A 1.87591E-03
7 8.44758E-05
8 6.75108E03
9 6.91576E-03

10 6.91576E-03
11 8.7917003E
12 7.49161E-04
13 1.26954E06
14 1.269545 06

ELEMENT P(VERr
BRANCH VALUE

1 2.878097-04
2 4.68676E-07
3 2.68426E04
4 7.22851E-04
5 1.74336E02
6 4,22296-02:;

7 3.11137E06
8 4.557717-02
9 1.12,150E01

10 4,78278E-02
11 7.72939E-06
12 1.36578!"Th'
13 1.61173E-2_
14 1.611777-06

FP7URE

F
i
g
u
r
e

6

A
C

A
N
A
L
Y
S
I
S

E
X
A
M
P
L
E

N
E
T
W
O
R
K

SPECIFY TYPE OP ANALYSI5

AC---TEST PROBLEM

ENTER CIRCUITDESCRIPTION

fi1,0-*1=1

El=1/0
R2,142=1
£3.243=1
R4:30=1
L5,24-4=:5
£6,445=4
R7,540:=1
M1.3-06z1
172,345:t.12

PC
EX

110. Oy BRANCEES: 7
110. OF NODES: 5

SPECIFY OUTPUT DESIRED

NV
14-5

EV
147
EC
147
BY
147
BC.
147
EP
147
MISC
1

SPECIFY FREQUENCY (Hg) MIN MAX INCREMENT

.159155

TYPE THE COMMANDS:)ERASE LANG
)COPY ECAPLAC
EX

FIGURE 7-1

AC AR;ILYSS

FRE0= 0.159155

NODE VOLTAGES
NODE MAGNITUDE PRASE

1 6.70722L01 8.00
2 2.777642 01 29.63
3 3.00309E01 1.2,34
4 2.84699E-01 68.02
5 5.15025E-02 34.51

BRANCH._

1

2

3

4

6

7

VOLTAGE'S
MAGNITUDE

6.70722E-01
3.48548E01
2.53359E:01
3.003092 01
2.34889E01
0.00309E:01
5.150265 02

PHASE

172.00
15.54

- 82.06
12.34
19.25
77.66
34.51

ELEMENT
BRANCH

VOLTAGES
MAGNITUD PHASE

1 3.48540E-01 15.54
2 3.48548E:01 15.54
3 2.53359E_01
4 3.003095 01

_82.06
12.34

5 2.34888E01 19.25
6 3.00309E 01. 77.66
71, 5.15026E-02 34.51

ELEMENT CURRE=.
BRANCH MAGUITUDE PRASE

1 ,3.45548E-01 15.54
2 3.48548E-01 15.54
3 3.00309E-01 12.34
4 3.00309E-01 12.34
5 5:15026E-02
6 5.15026E-02 --34.513.51
7 5.15026E-02 34.51

FIGURE 7-2

184

BRANCH
-BRAXS

1

CURRENT:7
MAGYITUOS

3.48548E01

PHA :E

15.54
2 3.48548E-01

_
15.54

3 3.00300E-01
-
12.34

4 3.00309E-01 -12.34
5 5.15026E02

_
34.51

6 5.15026E-02
_
34.51

7 5.15026E02
_
34.51

ELENY1T POWERS
BRANCH MAGNITUDE

1 1.21485E01
2 1.21485E-01

-5.83554E'03
4 9.01857E02
5 1.16711E-02
6 5.83554E03
7 2.65252E-03

YR
2 1 0 0 0

1 1 0 0 0

0 0 1 0 0

0 0 0 0

0 0 0 1

YX
0 0 0 0 0

0 1.8437 1.625 0.40625 -0.1875

0 1.625
_
1.5

_
0.375 0.25

0 0.40625
_
0.375

_
0.34375 0.3125

0 -0.1875 0.25 0.3125
_
0.375

ECVR
1 0 0 0 0

Ecyr
0 0

LUAT
1.5
0.125

'C'

FIGURE 7-3

0

0.125
0.09375
0.0625

_
0.25
0:0625-
0.375

:t

e

F
i
g
u
r
e

8

T
R
A
N
S
I
E
N
T

A
N
A
L
Y
S
I
S

E
X
A
M
P
L
E

N
E
T
W
O
R
K

SPECIFY WE OF ANALYSIS

TRANSIENT

ENTER CIRCUIT DESCRTPTIOa

R1,0,001
ET1,0,10,
SO=10
G2,14-0=1
G3,1.0-0=(1E-6,-1.25)
E3=-1
G4,1-1-0=(1E-5,2.25)
E4= 1.5
SW1,31.3

TI=1
FI=5
PC
EX

NO. OF BRANCHES: 4
NO. CP NODES: 1

SPECIFY OUTPUT DESIRED

NV
1

EV

EC
1,44

BV

BC

EP

NISC

TYPE TRE COMM:IDS:.

FIGURE. 9-1

)ERASE LANG
)COPY TERRYTRAN TRIO
EX .

187

TRARSIENT ANALrSIS

TIME= 0

NODE VOLTAGES
',ODE vA r, us

1 4.99500E10

ELEMENT CURRE;JTS
BRANCH VALUE.

1 4.99500E07
2 4.995003-10

-43:99.999E7U7
4 1.50000E OE

TIME= 1

NODE VOLTAGES
NODE . VALUE

1 9.99-601E01

ELEMENT CURRENTS
BRANCH VALUE

1 9.99001E01
2 9.99001E01
3 9.99000E-10
4 M5.009981:7

SWITCHES OFF.: 1--

TIME= 1

q0DE.VOLTAGES
NODE VALUE

9.99976E-01

FIGURE 9-2

ELEME.7T.CIJRRE;ITS
:MANCH VAT,UE

1 1.00001E00
2 9.99977E-01
3 2.93036E-05
4 5.00022E 07

TILE= 1.4990

11'.720E VOLTAGES

NODE VW?

1.49913E00

ELEMENT CURRENTS
BRANCH VALUE

1 8.75219E01
2 1.49912E00
3 6.23906E 01

8.74265E10

SWITCHES ON: 2

FIGURE 9-3

BIBLIOGRAPHY

1. The 1620 Electronic Cizcuit Analysis Program ILCAPL /1620:EE1021L User's Manual, inite
Plains, New York: International Business Machines Corporation, 1965.

190

USE OF APL IN TEACHING ELECTRICAL NETWORK THEORY

Paul Penfield, Jr.
Massachusetts Institute of Technology

Cambridge, Massachusetts 0;r139

This paper discussed an experiment_ in which APL was used in a college course about
electrical network theory.

Background

The course is 6.01, Introductory Network Theory, which is taught to Freshmen and Sophomores
at M.I.T. It covers both continuous networks (RLC networks with dependent sources) and discrete
networks, including finite-state machines and combivational-logic networks. In the case of RLC-
networks, both time-domain and frequency-domain aspects are covered. This course is ,required

for all students majoring in engineering (including computer science) at M.I.T.
Except for an elective course in computation, it is the first exposure most of the students have
to electrical engineering. It therefore serves as a common foundation for many courses to
follow.

There is an enrollment each term of between 100 and 300. Each student is expected to
attend two lectures and two recitations per week, and then a one-hour tutorial with a siugle

tutor. In addition,, of coarse, there is homework aad in the Spriag 1972 term, some of that
involved the use of the computer.

Four APL terminals were available sixteen hours per day and this turned out to be

sufficient.

Purlase

The APL notation was adopted instead of standard algebraic notation because of its
preciseness and completeness. the computer was used partly as motivation for the students, but

primarily as a tool to check the correctness of circuit-theory algorithms written by the
students.

Note that the purpose is not to introduce the students to a computer, nor to learn a
computer language, nor to learn anything about numerical methods or computer-aided design. APL

was used simply as a language to express algorithms. Since much of mathematics is, behind the

surface, algorithmic, and since' much of circuit-theory is mathematical, APL merely served as a

language in which to express ideas relating to circuit theory.

Use

APL notation was used in the lectures, in the notes, in the recitations and in the
tutorials. Initially, the staff (which consisted of six graduate students and four recitation

instructors) was unfamiliar with APL. In,the recitations, the use of APL never did take over
completely. In the tutorials, whether APL or standard notation was used depended largely on the

preferences of the tutors and the individual students. Because the staff was not familiar with
APL it first, there were-several instances of confusion over precedence rules, or the use of the
equals sign. Many of the equations had an unusual appearance. For example, the equation relating

tha voltage and current /a's semiconductor, diode, which in ordinary natation is

iC qv /kT

came out in APL notation as

I ,erSx*QxV+XxT

which to most of us, appeared relatively awkward at first.

The first lecture, .recitation, and homework set exposed the students to the
and how to; use it on the computer. This exposure turned out to be sufficient. Use.

OLCOURSE in Library 1, and as part of the first homework set; the students were
APLCOURSE with a specified sat of primitive functions. The students were also
't

language APL
was mad& of
asked to run
given drill

problems to do off-line and asked to verify them at the terminal. The APL User's manual was a

"Suggested Text"; in retrospect, it should have been a required text. In addition, Gilman and

Hose, APL 360, An Interactive Approach, was also. a "Suggested Text."

After the first week, the students vere expected to be able to use the computer when
reluested. The typical way in which the homewoe4 sets were handled is as follows. Consider the

algorithms that are necessary to compute the equivalent resistance of two resistors in parallel

or two resistors in series. If these two functions, p and S are dyadic functions with a return,

then any series-parallel resistor network can be analyzed by repeated use of these two

functions. The students were first-asked to solve several series- parallel networks by hand.

These were relatively simple networks, consisting of not mire than four or five resistors, and

element values were chosen so results would usually be integers. Next, the students were asked

to write the algorithms for s and P. in APL, off-line. In the next problem, they were asked to
implement these on the computer, and.test them by using thea examples that they had already

solved by hand. Finally, toey were asked to find the equivalent resistance of a relatively

complicated network with fourteen resistors, which in principle, they could have done by hadn,

but in practice, would have been tedious. Other weeks the particular algorithms were different,

but the same general approach was used. The students always did simple cases by hand, then wrote

the algorithms, then implemented them on the computer, then tested the implementation on the
examples that they had already done, and finally, solved a problem that was too complicated to

do by hand. About five homework sets out of 13 had such problems.

Results

The use of APL as a notation worked well 'for the 'first half of the term. However, when

differential equations were encountered, i.e., when RLC networks in the timeed4mae6 were

introduced,, the APL notatioi was insufficient. The lack of notation for derivatives and

integrals proved to be fatal. APL notation was abandoned, a101ough it was returned to at a.later

time.

Up until.this point, however, the APL notation was effective as a communication mechanism,

despite the fact that neither the students nor the staff was familiar with it at the outset.

Whether it was any more effective than standard notation is unclear; it was certainly no less

so, and students had no problems in switching back and forth.

As far as the computer is concerned, the students did_theehomework sets as they were

expected to and they appear to have learned the_circuitetheory-ilgorithes by implementing them.

The students' experiences are probabli_best-suiie-d up by the answer I received from a number of
students when 1 asked them the question, "Did you find putting the algorithms on the computer to

be educational?" Their answee universally was "No" followed by the statement that putting them

on the computer did not teach them anything, but writing them prior to putting them on did.

Of course, the use of tie computer was not appropriate for all aspects of circuit theory,

and was not used every week. In particular, the lack of software dealing with differential

equations virtually precluded. its use for time-domain analysis of linear networks. However,

students did write fenetions for complex arithmetic, which they then used to implement some

frequency-domain analysis techniques for ALC networks.

In :generalv.the students Aid remarkably well on the computer problems., Of the students who

consistently turned in the homework over 901 got the computer problems done correctly most

times. 'Some students did a minimum of work en the computer and some appeared to dislike it, but

most did more than was asked aid seemed to enjoy the experience and learn from it.

The time spent on the terminals was not excessive. For example, for the series-parallel

algorith, discussed above, the typical terminal time was less than one hour per student.

Assessment

My assessment of this experiment, as far as the notation alone 'is concerned is

.incon.clusive. The lack of notation for derivatives. and integrals is a flaw which is very

unfortunate. because differential equations have an important role in circuit theory.

ef
As'. far as the student use of the computer is concerned, 'this as very helpful. The

students learned' from the-competer and they found it enjOyable and ?rovocative.

It" should be emphasized that APLAras used merely as a. vehicle in which to express and test

algorithms. having to do with circuit theory. Too often it is assumed that the purpose of

computers in scientific 'and engineering courses is to allow the students a "Canned" programv,
since sucheprograms generally lo automatically the elery steps we want the st-dents. to learn. The

assumpticin ,behind the experiment reported here is that the computer shoUld,,,insiead, be used as

melium in which the students can express ideas relating to'the subject matter. In a sense, the
computer then plays the role of a proolem grader, forcing a student to continually sharpen his
ideas until he ',passes," i.e.e until his algorithms ruiCproperly.

Present plans are to continue the use of APi. in future terms, based on the experience
reported here.

